
Cryptography Engineering
• Lecture 1 (Oct 23, 2024)

• Today:
▪ Admin. Overview of the module
▪ Symmetric Primitives
▪ Diffie-Hellman Key Exchange, ElGamal Encryption
▪ Signature

• Slides and example code can be found on:
• https://runzhizeng.github.io/CE-w2425

https://runzhizeng.github.io/CE-w2425

• Lecturer & TA: Runzhi Zeng

• Email:
• runzhi.zeng@uni-kassel.de

• Office hours
• Office: Room 2628
• 3:15 pm – 3:45 pm, Wednesday
• (Please send an email in advance)

• All information is available on:
• https://runzhizeng.github.io/CE-w2425

Contact Information

mailto:runzhi.zeng@uni-kassel.de
https://runzhizeng.github.io/CE-w2425

• WS 2024/25: 14.10.2024 – 14.02.2025
• 14 Weeks, about 13 (or 14) lectures

• Lecture dates:
• October: 23, 30
• November: 06, 13, 20, 27
• December: 04, 11, 18 (no lecture. Depending on the schedule, we can have a meeting on Feb 14,

2025)
• January 2025: 15, 22, 29
• February 2025: 5, 12, 14

Time

• Lecturing (about an hour)

• Coding (including discussion, Q&A, etc.)

• Please bring your laptop!

Format

• You: Choose your favorite as long as it solves the task

• Ours: Always in Python

Programming Language

• Homework is mandatory for the exam:
o Must complete 60% of the homework to join the exam

• Homework counts 40% of the final grade

• Homework is related to your final project (will be explained)!

• Three submission deadlines for homework:
o Deadline-1: 22.11.2024 at 23:59, homework for lectures 1-2
o Deadline-2: 20.12.2024 at 23:59, homework for lectures 3-4, 7
o Deadline-3: 07.02.2025 at 23:59, homework for lectures 9-11

• How to submit:
• GitHub: Upload your codes and send Dr. Zeng the link via email before the deadlines.

Homework

• Two options

• What to submit: Codes and a simple report

• The simple report should contain:
• Choose 3-6 functions that you think are the best in your program and present them in your report,

including What it does, How it works, and Why it works correctly
• 2-4 pages, no introduction is needed

• Submission deadline for the final project:
o 28.02.2025 at 23:59

• How to submit:
• Send Dr. Zeng an E-Mail before the deadlines.

Final Project

• Oral exam (About your final project):
• We will ask you questions about your report and codes of your final project

• When? To be decided

Oral Exam

• To be qualified for the exam: Finish 60% of the homework

• 40% of Final grade = Your homework

• 60% of Final grade = Your project (meaning codes and report) + oral exam

Short summary about homework, final project and
exam

Overall Goals

• We focus on how to use cryptographic algorithms to ensure:
• Confidentiality (“…learn nothing about your ciphertext…”)
• Integrity (“…cannot modify your data…”)
• Authentication (“…verify your identities…”)
• Forward/Backward Secrecy (“…protect past/future communications…”)
• Quantum Security (“…against attackers with quantum devices…”)

…in real-world applications.

Brief Overview

• Main topics:
• Symmetric primitives and necessary background (today)
• Key exchange
• Digital Signature
• Secure Messaging
• Password-based Authentication
• Post-quantum Cryptography

Cryptography primitives – Hash

• Hash function:
H(“…arbitrary-length string…”) = a fixed length bit string

• Security: collision resistance, (second) preimage resistance, …
• SHA3 (Secure Hash Algorithm 3)
• Do not use MD5 (which was broken)…

Cryptography primitives - SKE

• Symmetric-key Encryption

Encrypt Decrypt

𝑘𝑒𝑦 𝑘𝑒𝑦

ciphertext
Alice Bob

Cryptography primitives - SKE

• Symmetric-key Encryption (Confidentiality)

Encrypt Decrypt

𝑘𝑒𝑦

(without …)

ciphertext

𝑘𝑒𝑦

Alice Bob

Cryptography primitives – SKE

• Symmetric-key Encryption
• AES (Advanced Encryption Standard)
• Fixed-length encryption (block cipher)

• Extend to arbitrary-length encryption via Mode of Operation
• CBC, CTR, ...

(Image from
Wikipedia)

Cryptography primitives - MAC

• Message Authentication Code (MAC)
• Integrity (...cannot forge a valid MAC tag without knowing the secret key...)
• HMAC (Hash-based message authentication code)

Signing
algorithm

𝑚 (message)

𝜏
Verification
algorithm

accept
/reject

(𝑚, 𝜏)

Cryptography primitives – KDF

• Key Derivation Function (KDF)
KDF(“…shared secret with randomness…”) = a symmetric key

▪ Used to derive a key for symmetric key encryption, e.g., K <-- KDF(g^xy)
▪ HKDF (based on HMAC)
▪ Derive keys of arbitrary lengths

Cryptography primitives - AE

• Authenticated Encryption
• Symmetric Encryption
• Not only Confidentiality, but also Integrity

(without …)

ciphertext

(without …)

ciphertext

Cryptography primitives - AE

• Authenticated Encryption
• Symmetric Encryption
• Not only Confidentiality, but also Integrity

• Approaches to authenticated encryption:
• Encrypt-then-MAC (EtM), ...

• Authenticated Encryption with Associated Data (AEAD)
• Ensure the message and additional data (like headers) are authenticated and encrypted

securely.
• AES-GCM, ChaCha20-Poly1305, ...

Cryptography primitives - DHKE

• Diffie-Hellman Key Exchange

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

Cryptography primitives - DHKE

• Diffie-Hellman Key Exchange

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

It can be an
elliptic curve group

or
a group of integers

modulo n.

Cryptography primitives - DHKE

• Diffie-Hellman Key Exchange

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

Cryptography primitives - DHKE

• Diffie-Hellman Key Exchange

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

𝐾Alice = 𝑔𝑥𝑦 = 𝐾Bob𝐾Alice = 𝑌𝑥 𝐾Bob = 𝑋𝑦

Cryptography primitives - PKE

• Public-key Encryption (PKE)

(𝑠𝑘, 𝑝𝑘)
𝑝𝑘

𝑝𝑘

• Public-key Encryption (PKE)

Cryptography primitives - PKE

(𝑠𝑘, 𝑝𝑘)

Encryption
algorithm

(message)

𝑝𝑘

𝑐𝑡 𝑚 𝑐𝑡

• Public-key Encryption (PKE)

Cryptography primitives - PKE

(𝑠𝑘, 𝑝𝑘)

Encryption
algorithm

𝑚

𝑝𝑘

𝑐𝑡
Decryption
algorithm

𝑚 𝑐𝑡

Cryptography primitives - PKE

• A PKE scheme: ElGamal Encryption

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

𝑠𝑘: 𝑥 ←$ ℤ𝑞

𝑝𝑘: 𝑋 = 𝑔𝑥

𝑝𝑘 𝑝𝑘: 𝑋

message: 𝑚 ∈ 𝔾

• A PKE scheme: ElGamal Encryption

Cryptography primitives - PKE

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

𝑦 ←$ ℤ𝑞

𝑐0 = 𝑌
𝐾 = 𝑋𝑦(= 𝑔𝑥𝑦)

message: 𝑚 ∈ 𝔾
𝑠𝑘: 𝑥 ←$ ℤ𝑞

𝑝𝑘: 𝑋 = 𝑔𝑥
𝑝𝑘: 𝑋

Cryptography primitives - PKE

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

𝑦 ←$ ℤ𝑞

𝑐0 = 𝑌
𝐾 = 𝑋𝑦(= 𝑔𝑥𝑦)

𝑐1 = 𝐾 ⋅ 𝑚𝑐0, 𝑐1

𝐾 = 𝑐0
𝑥(= 𝑔𝑥𝑦)

𝑚 = 𝑐1 ⋅ 𝐾−1

𝑠𝑘: 𝑥 ←$ ℤ𝑞

𝑝𝑘: 𝑋 = 𝑔𝑥

• A PKE scheme: ElGamal Encryption

message: 𝑚 ∈ 𝔾
𝑝𝑘: 𝑋

Cryptography primitives – Digital Signature

• Signature scheme

(𝑝𝑘, 𝑠𝑘) 𝑝𝑘

𝑝𝑘

Cryptography primitives – Digital Signature

• Signature scheme

(𝑝𝑘, 𝑠𝑘)

Signing
algorithm

𝑚 (message)

𝜎

𝑚, 𝜎
𝑝𝑘

Cryptography primitives – Digital Signature

• Signature scheme

(𝑝𝑘, 𝑠𝑘)

Signing
algorithm

𝑚 (message)

𝜎

𝑝𝑘

Verification
algorithm

accept
/reject

(𝑚, 𝜎)

• Signature scheme
• Schnorr’s signature scheme
• DSA (Digital signature algorithm)
• Will be discussed in the next lecture

Cryptography primitives – Digital Signature

1. Find some useful cryptographic libraries (Python: PyNaCl, ecdsa, cryptography,
PyCryptodomem, etc.), Google (Bing/ChatGPT/…) them and figure out how to install them!

2. Given the example code of DHKE, implement the hashed ElGamal encryption

• Some example codes are available: DHKE+KDF+SKE, socket connection

Coding Tasks

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

𝑦 ←$ ℤ𝑞, 𝑌 = 𝑔𝑦

𝑐0 = 𝑌
𝐾 = KDF(𝑌, 𝑋𝑦)
𝑐1 = SEnc(𝐾, 𝑚)

𝑝𝑘: 𝑋
message: 𝑚 ∈ 0,1 ∗

𝑐0, 𝑐1𝐾 = KDF 𝑐0, 𝑐0
𝑥

𝑚 = SDec(𝐾, 𝑐1)

𝑠𝑘: 𝑥 ←$ ℤ𝑞

𝑝𝑘: 𝑋 = 𝑔𝑥
• KDF: Key Derivation

Function
• SKE = (Senc, SDec) is

a symmetric-key
encryption scheme

Homework

• Homework: Consider implementing DHKE to enable two programs on your PC to perform a
key exchange (using sockets, etc.)

1. Program Alice <-- (connection) --> Program Bob
2. Program Alice -- g^x --> Program Bob
3. Program Alice <-- g^y -- Program Bob

• Homework: Add a trusted server to help the key exchange procedure (using sockets, etc.)
1. Program Alice <-- (connection) --> Server <-- (connection) --> Program Bob

2. Program Alice -- g^x --> Server -- g^x --> Program Bob
3. Program Alice <-- g^y -- Server <-- g^y -- Program Bob

Further Reading

• AEAD and AES-GCM: https://en.wikipedia.org/wiki/Galois/Counter_Mode
• HKDF: https://en.wikipedia.org/wiki/HKDF
• Elliptic Curve Cryptography: https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-

curve-cryptography-ecc
• ECIES Hybrid Encryption Scheme: https://cryptobook.nakov.com/asymmetric-key-

ciphers/ecies-public-key-encryption
• An interesting website: https://cryptobook.nakov.com/

https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/HKDF
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://cryptobook.nakov.com/

	Slide 1: Cryptography Engineering
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

