
Cryptography Engineering 
• Lecture 1 (Oct 23, 2024)

• Today:
▪ Admin. Overview of the module
▪ Symmetric Primitives
▪ Diffie-Hellman Key Exchange, ElGamal Encryption
▪ Signature

• Slides and example code can be found on:
• https://runzhizeng.github.io/CE-w2425

https://runzhizeng.github.io/CE-w2425


• Lecturer & TA: Runzhi Zeng

• Email: 
• runzhi.zeng@uni-kassel.de

• Office hours
• Office: Room 2628
• 3:15 pm – 3:45 pm, Wednesday
• (Please send an email in advance)

• All information is available on: 
• https://runzhizeng.github.io/CE-w2425

Contact Information

mailto:runzhi.zeng@uni-kassel.de
https://runzhizeng.github.io/CE-w2425


• WS 2024/25: 14.10.2024 – 14.02.2025
• 14 Weeks, about 13 (or 14) lectures

• Lecture dates:
• October: 23, 30
• November: 06, 13, 20, 27
• December: 04, 11, 18 (no lecture. Depending on the schedule, we can have a meeting on Feb 14, 

2025)
• January 2025: 15, 22, 29
• February 2025: 5, 12, 14 

Time



• Lecturing (about an hour)

• Coding (including discussion, Q&A, etc.)

• Please bring your laptop!

Format



• You: Choose your favorite as long as it solves the task

• Ours: Always in Python

Programming Language



• Homework is mandatory for the exam:
o Must complete 60% of the homework to join the exam

• Homework counts 40% of the final grade

• Homework is related to your final project (will be explained)!

• Three submission deadlines for homework:
o Deadline-1: 22.11.2024 at 23:59, homework for lectures 1-2
o Deadline-2: 20.12.2024 at 23:59, homework for lectures 3-4, 7
o Deadline-3: 07.02.2025 at 23:59, homework for lectures 9-11

• How to submit:
• GitHub: Upload your codes and send Dr. Zeng the link via email before the deadlines.

Homework



• Two options

• What to submit: Codes and a simple report

• The simple report should contain:
• Choose 3-6 functions that you think are the best in your program and present them in your report, 

including What it does, How it works, and Why it works correctly
• 2-4 pages, no introduction is needed

• Submission deadline for the final project:
o 28.02.2025 at 23:59

• How to submit:
• Send Dr. Zeng an E-Mail before the deadlines.

Final Project



• Oral exam (About your final project): 
• We will ask you questions about your report and codes of your final project

• When? To be decided

Oral Exam 



• To be qualified for the exam: Finish 60% of the homework 

• 40% of Final grade = Your homework

• 60% of Final grade = Your project (meaning codes and report) + oral exam

Short summary about homework, final project and 
exam



Overall Goals

• We focus on how to use cryptographic algorithms to ensure:
• Confidentiality                                       (“…learn nothing about your ciphertext…”)
• Integrity                                                     (“…cannot modify your data…”)
• Authentication                                       (“…verify your identities…”)
• Forward/Backward Secrecy            (“…protect past/future communications…”)
• Quantum Security                                (“…against attackers with quantum devices…”)

…in real-world applications.



Brief Overview

• Main topics:
• Symmetric primitives and necessary background (today)
• Key exchange
• Digital Signature
• Secure Messaging
• Password-based Authentication
• Post-quantum Cryptography



Cryptography primitives – Hash

• Hash function:
H( “…arbitrary-length string…” ) = a fixed length bit string

• Security: collision resistance, (second) preimage resistance, …
• SHA3 (Secure Hash Algorithm 3)
• Do not use MD5 (which was broken)…



Cryptography primitives - SKE

• Symmetric-key Encryption

Encrypt Decrypt

𝑘𝑒𝑦 𝑘𝑒𝑦

ciphertext
Alice Bob



Cryptography primitives - SKE

• Symmetric-key Encryption (Confidentiality)

Encrypt Decrypt

𝑘𝑒𝑦

(without          …) 

ciphertext

𝑘𝑒𝑦

Alice Bob



Cryptography primitives – SKE

• Symmetric-key Encryption
• AES (Advanced Encryption Standard)
• Fixed-length encryption (block cipher)

• Extend to arbitrary-length encryption via Mode of Operation
• CBC, CTR, ...

(Image from 
Wikipedia)



Cryptography primitives - MAC

• Message Authentication Code (MAC)
• Integrity (...cannot forge a valid MAC tag without knowing the secret key...)
• HMAC (Hash-based message authentication code)

Signing 
algorithm

𝑚 (message)

𝜏
Verification 
algorithm

accept
/reject

(𝑚, 𝜏)



Cryptography primitives – KDF

• Key Derivation Function (KDF)
KDF( “…shared secret with randomness…” ) = a symmetric key

▪ Used to derive a key for symmetric key encryption, e.g., K <-- KDF(g^xy)
▪ HKDF (based on HMAC)
▪ Derive keys of arbitrary lengths



Cryptography primitives - AE

• Authenticated Encryption
• Symmetric Encryption
• Not only Confidentiality, but also Integrity

(without          …) 

ciphertext

(without          …) 

ciphertext



Cryptography primitives - AE

• Authenticated Encryption
• Symmetric Encryption
• Not only Confidentiality, but also Integrity

• Approaches to authenticated encryption:
• Encrypt-then-MAC (EtM), ...

• Authenticated Encryption with Associated Data (AEAD)
• Ensure the message and additional data (like headers) are authenticated and encrypted 

securely.
• AES-GCM, ChaCha20-Poly1305, ...



Cryptography primitives - DHKE

• Diffie-Hellman Key Exchange

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔



Cryptography primitives - DHKE

• Diffie-Hellman Key Exchange

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

It can be an 
elliptic curve group 

or 
a group of integers 

modulo n.



Cryptography primitives - DHKE

• Diffie-Hellman Key Exchange

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦



Cryptography primitives - DHKE

• Diffie-Hellman Key Exchange

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

𝐾Alice = 𝑔𝑥𝑦 = 𝐾Bob𝐾Alice = 𝑌𝑥 𝐾Bob = 𝑋𝑦



Cryptography primitives - PKE

• Public-key Encryption (PKE)

(𝑠𝑘, 𝑝𝑘)
𝑝𝑘

𝑝𝑘



• Public-key Encryption (PKE)

Cryptography primitives - PKE

(𝑠𝑘, 𝑝𝑘)

Encryption 
algorithm

(message)

𝑝𝑘

𝑐𝑡 𝑚 𝑐𝑡



• Public-key Encryption (PKE)

Cryptography primitives - PKE

(𝑠𝑘, 𝑝𝑘)

Encryption 
algorithm

𝑚 

𝑝𝑘

𝑐𝑡
Decryption 
algorithm

𝑚 𝑐𝑡



Cryptography primitives - PKE

• A PKE scheme: ElGamal Encryption 

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑠𝑘:  𝑥 ←$ ℤ𝑞

𝑝𝑘:  𝑋 = 𝑔𝑥

𝑝𝑘 𝑝𝑘:  𝑋

message: 𝑚 ∈ 𝔾



• A PKE scheme: ElGamal Encryption 

Cryptography primitives - PKE

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑦 ←$ ℤ𝑞

𝑐0 = 𝑌
𝐾 = 𝑋𝑦(= 𝑔𝑥𝑦)

message: 𝑚 ∈ 𝔾
𝑠𝑘:  𝑥 ←$ ℤ𝑞

𝑝𝑘:  𝑋 = 𝑔𝑥
𝑝𝑘:  𝑋



Cryptography primitives - PKE

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑦 ←$ ℤ𝑞

𝑐0 = 𝑌
𝐾 = 𝑋𝑦(= 𝑔𝑥𝑦)

𝑐1 = 𝐾 ⋅ 𝑚𝑐0, 𝑐1

𝐾 = 𝑐0
𝑥(= 𝑔𝑥𝑦)

𝑚 = 𝑐1 ⋅ 𝐾−1

𝑠𝑘:  𝑥 ←$ ℤ𝑞

𝑝𝑘:  𝑋 = 𝑔𝑥

• A PKE scheme: ElGamal Encryption 

message: 𝑚 ∈ 𝔾
𝑝𝑘:  𝑋



Cryptography primitives – Digital Signature

• Signature scheme

(𝑝𝑘, 𝑠𝑘) 𝑝𝑘

𝑝𝑘



Cryptography primitives – Digital Signature

• Signature scheme

(𝑝𝑘, 𝑠𝑘)

Signing 
algorithm

𝑚 (message)

𝜎

𝑚, 𝜎
𝑝𝑘



Cryptography primitives – Digital Signature

• Signature scheme

(𝑝𝑘, 𝑠𝑘)

Signing 
algorithm

𝑚 (message)

𝜎

𝑝𝑘

Verification 
algorithm

accept
/reject

(𝑚, 𝜎)



• Signature scheme
• Schnorr’s signature scheme
• DSA (Digital signature algorithm)
• Will be discussed in the next lecture

Cryptography primitives – Digital Signature



1. Find some useful cryptographic libraries (Python: PyNaCl, ecdsa, cryptography, 
PyCryptodomem, etc.), Google (Bing/ChatGPT/…) them and figure out how to install them!

2. Given the example code of DHKE, implement the hashed ElGamal encryption

• Some example codes are available: DHKE+KDF+SKE, socket connection 

Coding Tasks

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑦 ←$ ℤ𝑞, 𝑌 = 𝑔𝑦

𝑐0 = 𝑌
𝐾 = KDF(𝑌, 𝑋𝑦)
𝑐1 = SEnc(𝐾, 𝑚)

𝑝𝑘:  𝑋
message: 𝑚 ∈ 0,1 ∗

𝑐0, 𝑐1𝐾 = KDF 𝑐0, 𝑐0
𝑥

𝑚 = SDec(𝐾, 𝑐1)

𝑠𝑘:  𝑥 ←$ ℤ𝑞

𝑝𝑘:  𝑋 = 𝑔𝑥
• KDF: Key Derivation 

Function
• SKE = (Senc, SDec) is 

a symmetric-key 
encryption scheme



Homework

• Homework: Consider implementing DHKE to enable two programs on your PC to perform a 
key exchange (using sockets, etc.)

1. Program Alice <-- (connection) --> Program Bob
2. Program Alice -- g^x --> Program Bob
3. Program Alice <-- g^y -- Program Bob

• Homework: Add a trusted server to help the key exchange procedure (using sockets, etc.)
1. Program Alice <-- (connection) --> Server <-- (connection) --> Program Bob

2. Program Alice -- g^x --> Server -- g^x --> Program Bob
3. Program Alice <-- g^y -- Server <-- g^y -- Program Bob



Further Reading

• AEAD and AES-GCM: https://en.wikipedia.org/wiki/Galois/Counter_Mode 
• HKDF: https://en.wikipedia.org/wiki/HKDF 
• Elliptic Curve Cryptography: https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-

curve-cryptography-ecc 
• ECIES Hybrid Encryption Scheme: https://cryptobook.nakov.com/asymmetric-key-

ciphers/ecies-public-key-encryption 
• An interesting website: https://cryptobook.nakov.com/ 

https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/HKDF
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://cryptobook.nakov.com/
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