Cryptography Engineering

* Lecture 10 (Jan 22, 2024)

* Today’s notes:
* Some attacks on Cryptosystems (and how to prevent them)
* Towards Post-Quantum Cryptography

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.
* Example: DHKE

@ (G.9,9):)
m A g-order group G with a generator g m

— X
X<—$Zq X_g N y<—$Zq

Y =g7

A

Kalice = Y* Kpop = XY

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.
 Example: DHKE

Q (G, g,9):

m A g-order group @ with a generator g m The security holds if the protocol
runs on specific groups

— X
X<—$Zq X_g N y<—$Zq

What if we use an element

Y =97 outside the group G?

A

Kalice = Y* Kpop = XY

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.

* Example: DHKE Curve1174

251-bit prime field Weierstrass curve.

((G], g’ CI): Curve from
A g-order group @ with a generator g

v¥=a®+tax+b

Parameters

G can be a subgroup of
another group G’
Co-factor: |G'| /|G| (the h

Name Value

ex7 iz
Ox486BE25B34C8080922B969257EER54CA0AF914A29067A5560BBIAEEOBCE7AGD
OXE347A25BF875DD2F1F12D8A10334D417CC15E77893A99FABF278CAS63072E6
(Ox3BE821D63D2CD5AFEQS04FA52E5CFA7A60A10446928CEAECFDS294F80BA5051 ,
OX66FEAE7B8B6FE152F743393029A61BFB839747C8FBOOF7B27A6841C07532A0)
OX1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF77965CADFD307348944D45FD166C971
ox04

value on the RHS figure)

Source: https://neuromancer.sk/std/other/Curve1174

NI KASSEL
E

U
\"/ RSITAT

https://neuromancer.sk/std/other/Curve1174

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.

 Example: DHKE

(@ 9,9):
A g-order group @ with a generator g

D
BN

v

G can be a subgroup of
another group G’
Co-factor: |G'| /|G| (the h

value on the RHS figure)
Use the co-factor to check
group membership

Check X" = 1?

// 1 is the identity group element
If so, reject

else:

Y <3 Lqg

Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

@ h(pw)® € G
m) h(pw)a-salt e G

(GcG',g,q,h=2):
A g-order group G with a generator g,
and |G'|/|G| =h

Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

XeQ
Xsalt = (G],

Find an element X s.t.
X’s orderis 2

(GcG',g,q,h=2):
A g-order group G with a generator g,

and |G'|/|G| =h

Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

(Gc G',g,q9,h=2):
A g-order group G with a generator g,

and |G'|/|G| =h
XEG

Find an element X s.t.
X’s orderis 2

Little Algebra:
If X’s orderis 2, then X7 = X (" m0d2) => We can determine the parity

of the salt: salt is an odd/even number if XS4t = X

Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

(Gc G',g,q9,h=2):
A g-order group G with a generator g,

and |G'|/|G| =h
XEG

Find an element X s.t.
X’s orderis 2

Exercise: Extend it to more general cases

Attacks using Invalid Inputs

* Other Example:
* |nvalid Curve Attacks (e.g. ECDSA): Using insecure curves.
* Invalid public keys

* Lessons: Follow the standards(/specifications/...), and keep updating with them...

Downgrade Attacks

* Exploit vulnerabilities in compatibility or protocol negotiation to downgrade cryptographic
protocols to weaker or obsolete versions.

* Example: TLS cipher cuite negotiation
« TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secure)
e TLS_RSA_WITH_RC4_128_SHA (no forward secrecy)

* Lessons: Use the latest protocol version (such as TLS 1.3), disable insecure or outdated
protocols/suites on both sides.

NI KASSEL
E

U
\"/ RSITAT

More Examples about Reuse

* Previous Example: Randomness Reuse in the DSA signature => Recovery of secret key
* Why should we not reuse randomness?

» An informal principle: Security of cryptosystem comes from the secret key and the randomness

» Secret key: High entropic, the “source” of security, ...
» Randomness/nonce/salt: Independency when using the same key, Freshness, ...

NI KASSEL
E

U
\"/ RSITAT

More Examples about Reuse

 Example: Reuse randomness in the Hashed ElGamal Encryption

ElGamalEnc(public_key = g*, plaintext = m)

/1 (G, g,q): A g-order group G with a generator g

1 r <3 Zq
2. co=9"
3 ¢cg=H@")dm

4.

Return (cg, ¢1)

D
BN

Encrypt m and m’ using
the same randomness

gr’H(gxr) @ m

g H(g™) @m'

\ 4

v

More Examples about Reuse

 Example: Reuse randomness in the Hashed ElGamal Encryption

ElGamalEnc(public_key = g*, plaintext = m)
/1 (G, g,q): A g-order group G with a generator g
1 r <3 Zq
2. ¢cp=g9"

3 ¢cg=H@")dm
4. Return (cq, c1)

-, g H(@G")dm
) > m'@m
g H(g*)dm'
Encrypt m and m’ using >
the same randomness
UNIKASSEL
VERSITAT

More Examples about Reuse

2 S

Username
password: pw (“Register”, Username, pw)
Then the server store {
user: Username // ... as index
. salt:r
Correction: The server [fite g

does not store rw

server_k_bundle: lpk,, lpk,, sk
client_enc_k_bundle: enc_client_keys
... // Auxiliary information

}in the password database

More Examples about Reuse

 Examples: Reuse salt in OPAQUE
* Suppose that Alice’s password is pw,, Bob’s password is pwg, and the password files stored in the
server are:

Username: Bob Username: Alice
salt: r salt: T
enc_AKE_keys: AEAD;,,_(...) enc_AKE_keys: AEAD,,, (...)

* |sitsecure? Why?

More Examples about Reuse

 Examples: Reuse salt in OPAQUE

* Suppose that Alice’s password is pw,, Bob’s password is pwg, and the password files stored in the
server are:

Username: Bob Username: Alice
salt: T salt: T
enc_AKE_keys: AEAD;,,_(...) enc_AKE_keys: AEAD,,, (...)
* Potentialrisks: If Alice’s password file is leaked, then the adversary can launch offline attacks to
recover Bob password from its OPAQUE protocol messages... Bob
S—— B
AEAD,,, (-..)) -

o -
@ -=- _(_Le_aT(z;g;)_ -== -7 (Eavesdropping)
Try allpw (and rw = H(pw, h(pw)")) such that

AEAD.Dec does not output rejection...

NI KASSEL
E

U
\"/ RSITAT

More Examples about Reuse

Examples: Single-seed-derived salt in OPAQUE

Suppose that the server has a random seed, Alice’s password is pw,, Bob’s password is pwg, and
the password files stored in the server are:

Username: Bob Username: Alice
salt: rg = PRF(seed, “Bob”) salt: 4 = PRF(seed, “Alice”)
enc_AKE_keys: AEAD;,,_(...) enc_AKE_keys: AEAD,,, (...)

Suppose that the seed is stored separately in some secure way...

Is it secure?

NI KASSEL
E

U
\"/ RSITAT

More Examples about Reuse

* Other examples:
 Reuse randomness in Schnorr/Schnorr-like signature schemes...
* Reuse of IVinthe AES-GCM mode, or short IV...
* Reuse randomness in SRP

Side-Channel Attacks

Side-channel information: By-product information when the system runs cryptographic algorithms.
» E.g., time, power consumption, cache access patterns, ...

Example:
* Timing Attacks
* Cache Attacks

An Example of Timing Attack: A website checks a user’s password character by character,
returning an error as soon as it finds the first mismatch.

Lessons: Use constant-time algorithms, masking sensitive operations, ...

NI KASSEL
E

U
\"/ RSITAT

Towards Post-Quantum Cryptography

* All previous attack examples are about wrong implementations of cryptographic algorithms, but
not about the algorithms themselves...

» Example: Breaking the ElGamal encryption => Solving DH problems...

Towards Post-Quantum Cryptography

* All previous attack examples are about wrong implementations of cryptographic algorithms, but
not about the algorithms themselves...

» Example: Breaking the ElGamal encryption => Solving DH problems...

* Modern cryptography builds on hardness assumptions:

* ElGamal encryption, DHKE, DSA, TLS 1.3, and others all rely on the hardness of Diffie-Hellman or RSA
problems...

* We assume these problems are hard to solve (i.e., there is no polynomial-time algorithm).

* What if these assumptions are broken?

NI KASSEL
E

U
\"/ RSITAT

Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
(

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
(

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

Shor’s algorithm
(quantum)

Peter Williston Shor
(image from Wikipedia)

Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
|

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

£

Shor’s algorithm

Recent progress in
Quantum Computers/Mechanisms...

Towards Post-Quantum Cryptography

* New Direction: Post-Quantum Cryptography

* Cryptographic algorithms run on classical computers, but remain secure against future quantum
computers...

» Still follow the methodology of modern cryptography: Assumptions => Schemes.

Towards Post-Quantum Cryptography

New Direction: Post-Quantum Cryptography

* Cryptographic algorithms run on classical computers, but remain secure against future quantum
computers...

Still follow the methodology of modern cryptography: Assumptions => Schemes.

Hardness Assumptions even against quantum adversaries:
* Lattices
* |sogeny (of Elliptic Curves)
* Code-based

* Standardization in progress (https://csrc.nist.gov/Projects/post-quantum-cryptography/news)

ASSE

U I K L
\"/ RSITAT

https://csrc.nist.gov/Projects/post-quantum-cryptography/news

Towards Post-Quantum Cryptography

New Direction: Post-Quantum Cryptography

* Cryptographic algorithms run on classical computers, but remain secure against future quantum
computers...

Still follow the methodology of modern cryptography: Assumptions => Schemes.

Hardness Assumptions even against quantum adversaries:
* Lattices
* |sogeny (of Elliptic Curves)
* Code-based

The last three lectures:

Post-Quantum Cryptography
with a focus on Lattice-based Cryptography

Standardization in progress (https://csrc.nist.gov/Projects/post-quantum-cryptography/news)

https://csrc.nist.gov/Projects/post-quantum-cryptography/news

Homework

e (1 point) Extend the toy example of attacking OPAQUE using small-order element to the case
that h = 4. What information will be revealed in this case?

e (1 point) Extend the toy example of attacking OPAQUE using small-order element to the case
that h = 24 where 1 =~ 16~32.

e (2 point) Try implementing pre-computation attacks (the complexity should be O(log |D])).

» Suppose that the client’s password is pw*, the salt stored in the server is salt”, and the password file
stored in the database is

(salt*,v=g

= Suppose that you get the salt and know the password is in a dictionary D (in the example code).

H(salt*, [user_name], pw*))

NI KASSEL
E

U
\"/ RSITAT

	Slide 1: Cryptography Engineering
	Slide 2: Attacks using Invalid Inputs
	Slide 3: Attacks using Invalid Inputs
	Slide 4: Attacks using Invalid Inputs
	Slide 5: Attacks using Invalid Inputs
	Slide 6: Attacks using Invalid Inputs
	Slide 7: Attacks using Invalid Inputs
	Slide 8: Attacks using Invalid Inputs
	Slide 9: Attacks using Invalid Inputs
	Slide 10: Attacks using Invalid Inputs
	Slide 11: Downgrade Attacks
	Slide 12: More Examples about Reuse
	Slide 13: More Examples about Reuse
	Slide 14: More Examples about Reuse
	Slide 15: More Examples about Reuse
	Slide 16: More Examples about Reuse
	Slide 17: More Examples about Reuse
	Slide 18: More Examples about Reuse
	Slide 19: More Examples about Reuse
	Slide 20: Side-Channel Attacks
	Slide 21: Towards Post-Quantum Cryptography
	Slide 22: Towards Post-Quantum Cryptography
	Slide 23: Towards Post-Quantum Cryptography
	Slide 24: Towards Post-Quantum Cryptography
	Slide 25: Towards Post-Quantum Cryptography
	Slide 26: Towards Post-Quantum Cryptography
	Slide 27: Towards Post-Quantum Cryptography
	Slide 28: Towards Post-Quantum Cryptography
	Slide 29

