
Cryptography Engineering 
• Lecture 10 (Jan 22, 2024)
• Today’s notes:

• Some attacks on Cryptosystems (and how to prevent them)
• Towards Post-Quantum Cryptography



• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

𝐾Alice = 𝑌𝑥 𝐾Bob = 𝑋𝑦



• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞): 
A 𝒒-order group 𝔾 with a generator 𝒈

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

𝐾Alice = 𝑌𝑥 𝐾Bob = 𝑋𝑦

• The security holds if the protocol 
runs on specific groups

• What if we use an element 
outside the group 𝔾? 



• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞): 
A 𝒒-order group 𝔾 with a generator 𝒈

• 𝔾 can be a subgroup of 
another group 𝔾′

• Co-factor: 𝔾′ /|𝔾| (the h 
value on the RHS figure)

Source: https://neuromancer.sk/std/other/Curve1174 

https://neuromancer.sk/std/other/Curve1174


• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞): 
A 𝒒-order group 𝔾 with a generator 𝒈

• 𝔾 can be a subgroup of 
another group 𝔾′

• Co-factor: 𝔾′ /|𝔾| (the h 
value on the RHS figure)

• Use the co-factor to check 
group membership

Check 𝑿𝒉 = 𝟏?
// 1 is the identity group element
If so, reject
else:

𝑦 ←$ ℤ𝑞  

𝑋 = 𝑔𝑥



• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

ℎ 𝑝𝑤 𝛼 ∈ 𝔾

ℎ 𝑝𝑤 𝛼⋅𝑠𝑎𝑙𝑡 ∈  𝔾

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2): 
A 𝒒-order group 𝔾 with a generator 𝒈, 

and 𝔾′ / 𝔾 = ℎ



• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

𝑋 ∈ 𝔾′

𝑋𝑠𝑎𝑙𝑡 ∈ 𝔾′

Find an element 𝑋  s.t. 
𝑋’s order is 2

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2): 
A 𝒒-order group 𝔾 with a generator 𝒈, 

and 𝔾′ / 𝔾 = ℎ



• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

𝑋 ∈ 𝔾′

𝑋𝑠𝑎𝑙𝑡 ∈ 𝔾′

Find an element 𝑋  s.t. 
𝑋’s order is 2

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2): 
A 𝒒-order group 𝔾 with a generator 𝒈, 

and 𝔾′ / 𝔾 = ℎ

Little Algebra:
 If 𝑋’s order is 2, then 𝑋𝑟 = 𝑋(𝑟 mod 2) => We can determine the parity 
of the salt: 𝑠𝑎𝑙𝑡 is an odd/even number if 𝑋𝑠𝑎𝑙𝑡 = 𝑋 



• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

𝑋 ∈ 𝔾′

𝑋𝑠𝑎𝑙𝑡 ∈ 𝔾′

Find an element 𝑋  s.t. 
𝑋’s order is 2

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2): 
A 𝒒-order group 𝔾 with a generator 𝒈, 

and 𝔾′ / 𝔾 = ℎ

Exercise: Extend it to more general cases



• Other Example:
• Invalid Curve Attacks (e.g. ECDSA): Using insecure curves.
• Invalid public keys
• …

• Lessons: Follow the standards(/specifications/…), and keep updating with them…

Attacks using Invalid Inputs



• Exploit vulnerabilities in compatibility or protocol negotiation to downgrade cryptographic 
protocols to weaker or obsolete versions.

• Example: TLS cipher cuite negotiation
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secure)
• TLS_RSA_WITH_RC4_128_SHA (no forward secrecy)

• Lessons: Use the latest protocol version (such as TLS 1.3), disable insecure or outdated 
protocols/suites on both sides.

Downgrade Attacks



More Examples about Reuse
• Previous Example: Randomness Reuse in the DSA signature => Recovery of secret key

• Why should we not reuse randomness?

➢An informal principle: Security of cryptosystem comes from the secret key and the randomness
➢ Secret key: High entropic, the “source” of security, ...
➢ Randomness/nonce/salt: Independency when using the same key, Freshness, ...



• Example: Reuse randomness in the Hashed ElGamal Encryption 

ElGamalEnc(public_key = 𝑔𝑥, plaintext = 𝑚)

1. 𝑟 ←$ ℤ𝑞

2. 𝑐0 = 𝑔𝑟

3. 𝑐1 = 𝐻 𝑔𝑥𝑟 ⊕ 𝑚
4. Return (𝑐0, 𝑐1)

// (𝔾, 𝑔, 𝑞): A 𝑞-order group 𝔾 with a generator 𝑔

Encrypt 𝑚 and 𝑚′ using 
the same randomness 

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚′

More Examples about Reuse



More Examples about Reuse
• Example: Reuse randomness in the Hashed ElGamal Encryption 

ElGamalEnc(public_key = 𝑔𝑥, plaintext = 𝑚)

1. 𝑟 ←$ ℤ𝑞

2. 𝑐0 = 𝑔𝑟

3. 𝑐1 = 𝐻 𝑔𝑥𝑟 ⊕ 𝑚
4. Return (𝑐0, 𝑐1)

// (𝔾, 𝑔, 𝑞): A 𝑞-order group 𝔾 with a generator 𝑔

Encrypt 𝑚 and 𝑚′ using 
the same randomness 

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚′
𝑚′ ⊕ 𝑚



Username
password: 𝒑𝒘 (“Register”, Username, 𝒑𝒘)

Encrypted by TLS 𝒔 ←$ ℤ𝑞

 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)

(𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐) ← AKE.KeyGen, (𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) ← AKE.KeyGen
 client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

enc_client_keys = AEAD(rw_key, client_key_info)

Then the server store {
user: Username // … as index
salt: 𝑟
password_file: 𝒓𝒘
server_k_bundle: 𝒍𝒑𝒌𝒄, 𝒍𝒑𝒌𝒔, 𝒍𝒔𝒌𝒔

client_enc_k_bundle: enc_client_keys
… // Auxiliary information
} in the password database

More Examples about Reuse

Correction: The server 
does not store rw



More Examples about Reuse
• Examples: Reuse salt in OPAQUE

• Suppose that Alice’s password is 𝑝𝑤𝐴, Bob’s password is 𝑝𝑤𝐵, and the password files stored in the 
server are:

• Is it secure? Why?

Username:             Bob
salt:                            𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐵

(… ) 

Username:             Alice
salt:                            𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐴

(… ) 



More Examples about Reuse
• Examples: Reuse salt in OPAQUE

• Suppose that Alice’s password is 𝑝𝑤𝐴, Bob’s password is 𝑝𝑤𝐵, and the password files stored in the 
server are:

• Potential risks: If Alice’s password file is leaked, then the adversary can launch offline attacks to 
recover Bob password from its OPAQUE protocol messages…

𝑟, …

(Leakage)

Bob

AEAD𝑟𝑤𝐵
(… )

(Eavesdropping)

Try all 𝑝𝑤 (and 𝑟𝑤 = 𝐻(𝑝𝑤, ℎ 𝑝𝑤 𝑟)) such that 
AEAD.Dec does not output rejection… 

Username:             Bob
salt:                            𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐵

(… ) 

Username:             Alice
salt:                            𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐴

(… ) 



More Examples about Reuse
• Examples: Single-seed-derived salt in OPAQUE

• Suppose that the server has a random 𝑠𝑒𝑒𝑑, Alice’s password is 𝑝𝑤𝐴, Bob’s password is 𝑝𝑤𝐵, and 
the password files stored in the server are:

• Suppose that the seed is stored separately in some secure way…

• Is it secure?

Username:             Bob
salt:                            𝑟𝐵 = PRF(𝑠𝑒𝑒𝑑, “Bob”)
enc_AKE_keys: AEAD𝑟𝑤𝐵

(… ) 

Username:             Alice
salt:                            𝑟𝐴 = PRF(𝑠𝑒𝑒𝑑, “Alice”)
enc_AKE_keys: AEAD𝑟𝑤𝐴

(… ) 

𝑟𝐴, …

(Leakage)



• Other examples:
• Reuse randomness in Schnorr/Schnorr-like signature schemes…
• Reuse of IV in the AES-GCM mode, or short IV…
• Reuse randomness in SRP
• …

More Examples about Reuse



• Side-channel information: By-product information when the system runs cryptographic algorithms.
◼ E.g., time, power consumption, cache access patterns, …

• Example: 
• Timing Attacks
• Cache Attacks
• …

• An Example of Timing Attack: A website checks a user’s password character by character, 
returning an error as soon as it finds the first mismatch. 

• Lessons: Use constant-time algorithms, masking sensitive operations, …

Side-Channel Attacks



Towards Post-Quantum Cryptography
• All previous attack examples are about wrong implementations of cryptographic algorithms, but 

not about the algorithms themselves…
➢ Example: Breaking the ElGamal encryption => Solving DH problems…



Towards Post-Quantum Cryptography
• All previous attack examples are about wrong implementations of cryptographic algorithms, but 

not about the algorithms themselves…
➢ Example: Breaking the ElGamal encryption => Solving DH problems…

• Modern cryptography builds on hardness assumptions:
• ElGamal encryption, DHKE, DSA, TLS 1.3, and others all rely on the hardness of Diffie-Hellman or RSA 

problems…
• We assume these problems are hard to solve (i.e., there is no polynomial-time algorithm).

• What if these assumptions are broken?



Towards Post-Quantum Cryptography

Source: xkcd/2347 and Nadia 
Heninger’s talk in PKC2024

Hardness of 
DH/RSA 

problems



Towards Post-Quantum Cryptography

Peter Williston Shor
(image from Wikipedia)Source: xkcd/2347 and Nadia 

Heninger’s talk in PKC2024

Hardness of 
DH/RSA 

problems

Shor’s algorithm 
(quantum)



Towards Post-Quantum Cryptography

Source: xkcd/2347 and Nadia 
Heninger’s talk in PKC2024

Hardness of 
DH/RSA 

problems

Shor’s algorithm

Recent progress in 
Quantum Computers/Mechanisms…



Towards Post-Quantum Cryptography
• New Direction: Post-Quantum Cryptography

• Cryptographic algorithms run on classical computers, but remain secure against future quantum 
computers…

• Still follow the methodology of modern cryptography: Assumptions => Schemes.



Towards Post-Quantum Cryptography
• New Direction: Post-Quantum Cryptography

• Cryptographic algorithms run on classical computers, but remain secure against future quantum 
computers…

• Still follow the methodology of modern cryptography: Assumptions => Schemes.

• Hardness Assumptions even against quantum adversaries:
• Lattices
• Isogeny (of Elliptic Curves)
• Code-based
• …

• Standardization in progress (https://csrc.nist.gov/Projects/post-quantum-cryptography/news) 

https://csrc.nist.gov/Projects/post-quantum-cryptography/news


Towards Post-Quantum Cryptography
• New Direction: Post-Quantum Cryptography

• Cryptographic algorithms run on classical computers, but remain secure against future quantum 
computers…

• Still follow the methodology of modern cryptography: Assumptions => Schemes.

• Hardness Assumptions even against quantum adversaries:
• Lattices
• Isogeny (of Elliptic Curves)
• Code-based
• …

• Standardization in progress (https://csrc.nist.gov/Projects/post-quantum-cryptography/news) 

The last three lectures: 
Post-Quantum Cryptography

with a focus on Lattice-based Cryptography

https://csrc.nist.gov/Projects/post-quantum-cryptography/news


Homework

• (1 point) Extend the toy example of attacking OPAQUE using small-order element to the case 
that h = 4. What information will be revealed in this case? 

• (1 point) Extend the toy example of attacking OPAQUE using small-order element to the case 
that h = 2𝜆 where 𝜆 ≈ 16~32. 

• (2 point) Try implementing pre-computation attacks (the complexity should be O(log |D|)).

▪ Suppose that the client’s password is 𝑝𝑤∗, the salt stored in the server is 𝑠𝑎𝑙𝑡∗, and the password file 
stored in the database is 

(𝑠𝑎𝑙𝑡∗, 𝑣 = 𝑔𝐻 𝑠𝑎𝑙𝑡∗, 𝑢𝑠𝑒𝑟_𝑛𝑎𝑚𝑒 , 𝑝𝑤∗
) // 𝑠𝑎𝑙𝑡∗, 𝑣 is in the example code

▪ Suppose that you get the salt and know the password is in a dictionary D (in the example code).


	Slide 1: Cryptography Engineering 
	Slide 2: Attacks using Invalid Inputs
	Slide 3: Attacks using Invalid Inputs
	Slide 4: Attacks using Invalid Inputs
	Slide 5: Attacks using Invalid Inputs
	Slide 6: Attacks using Invalid Inputs
	Slide 7: Attacks using Invalid Inputs
	Slide 8: Attacks using Invalid Inputs
	Slide 9: Attacks using Invalid Inputs
	Slide 10: Attacks using Invalid Inputs
	Slide 11: Downgrade Attacks
	Slide 12: More Examples about Reuse
	Slide 13: More Examples about Reuse
	Slide 14: More Examples about Reuse
	Slide 15: More Examples about Reuse
	Slide 16: More Examples about Reuse
	Slide 17: More Examples about Reuse
	Slide 18: More Examples about Reuse
	Slide 19: More Examples about Reuse
	Slide 20: Side-Channel Attacks
	Slide 21: Towards Post-Quantum Cryptography
	Slide 22: Towards Post-Quantum Cryptography
	Slide 23: Towards Post-Quantum Cryptography
	Slide 24: Towards Post-Quantum Cryptography
	Slide 25: Towards Post-Quantum Cryptography
	Slide 26: Towards Post-Quantum Cryptography
	Slide 27: Towards Post-Quantum Cryptography
	Slide 28: Towards Post-Quantum Cryptography
	Slide 29

