
Cryptography Engineering
• Lecture 2 (Oct 30, 2024)

• Today’s notes:
• Man-in-the-Middle attacks
• DSA signature, and nonce reuse
• Certificate

• Today’s coding tasks (and homework):
• Man-in-the-Middle attacks on DHKE
• Nonce reuse attacks on DSA
• Transporting pk using certificates (signatures)

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑦𝑦 ←$ ℤ𝑞𝑞𝑋𝑋 = 𝑔𝑔𝑥𝑥

𝑌𝑌 = 𝑔𝑔𝑦𝑦

𝐾𝐾Alice = 𝑌𝑌𝑥𝑥 𝐾𝐾Bob = 𝑋𝑋𝑦𝑦

Alice Bob

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑦𝑦 ←$ ℤ𝑞𝑞𝑋𝑋 = 𝑔𝑔𝑥𝑥

𝑌𝑌 = 𝑔𝑔𝑦𝑦

𝐾𝐾Bob = 𝑋𝑋𝑦𝑦

Alice Bob

Both X and Y are not
authenticated.

Namely, X and Y are not
binding to their owners

𝐾𝐾Alice = 𝑌𝑌𝑥𝑥

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑋𝑋 = 𝑔𝑔𝑥𝑥

Alice BobAdversary

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑋𝑋 = 𝑔𝑔𝑥𝑥

Alice Bob

When analyzing security,
we assume that the

adversary can (kind of)
control the network

Adversary

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞

Alice Bob

𝑋𝑋 = 𝑔𝑔𝑥𝑥 𝑦𝑦 ←$ ℤ𝑞𝑞

Adversary

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑋𝑋𝑋 = 𝑔𝑔𝑥𝑥𝑥

Alice Bob

𝑋𝑋 = 𝑔𝑔𝑥𝑥

𝑥𝑥𝑥 ←$ ℤ𝑞𝑞

𝑦𝑦 ←$ ℤ𝑞𝑞

𝐾𝐾Bob = 𝑋𝑋𝑋𝑦𝑦
𝑌𝑌 = 𝑔𝑔𝑦𝑦

Adversary

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑋𝑋𝑋 = 𝑔𝑔𝑥𝑥𝑥

𝐾𝐾Alice = 𝑌𝑌′𝑥𝑥

Alice Bob

𝑋𝑋 = 𝑔𝑔𝑥𝑥

𝑥𝑥𝑥 ←$ ℤ𝑞𝑞

𝑦𝑦 ←$ ℤ𝑞𝑞

𝐾𝐾Bob = 𝑋𝑋𝑋𝑦𝑦
𝑌𝑌𝑌 = 𝑔𝑔𝑦𝑦𝑦 𝑌𝑌 = 𝑔𝑔𝑦𝑦𝑦𝑦𝑦 ←$ ℤ𝑞𝑞

Adversary

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑋𝑋𝑋 = 𝑔𝑔𝑥𝑥𝑥

𝐾𝐾Alice = 𝑌𝑌′𝑥𝑥

Alice Bob

𝑋𝑋 = 𝑔𝑔𝑥𝑥

𝑥𝑥𝑥 ←$ ℤ𝑞𝑞

𝑦𝑦 ←$ ℤ𝑞𝑞

𝐾𝐾Bob = 𝑋𝑋𝑋𝑦𝑦
𝑌𝑌𝑌 = 𝑔𝑔𝑦𝑦𝑦 𝑌𝑌 = 𝑔𝑔𝑦𝑦𝑦𝑦𝑦 ←$ ℤ𝑞𝑞

𝐾𝐾′Alice = 𝑋𝑋𝑦𝑦𝑦

𝐾𝐾′Bob = 𝑌𝑌𝑌𝑥𝑥

Adversary

• Diffie-Hellman Key Exchange

MitM attacks on DHKE

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑋𝑋𝑋 = 𝑔𝑔𝑥𝑥𝑥

𝐾𝐾Alice = 𝑌𝑌′𝑥𝑥

Alice Bob

𝑋𝑋 = 𝑔𝑔𝑥𝑥

𝑥𝑥𝑥 ←$ ℤ𝑞𝑞

𝑦𝑦 ←$ ℤ𝑞𝑞

𝐾𝐾Bob = 𝑋𝑋𝑋𝑦𝑦
𝑌𝑌𝑌 = 𝑔𝑔𝑦𝑦𝑦 𝑌𝑌 = 𝑔𝑔𝑦𝑦𝑦𝑦𝑦 ←$ ℤ𝑞𝑞

𝐾𝐾′Alice = 𝑋𝑋𝑦𝑦𝑦

𝐾𝐾′Bob = 𝑌𝑌𝑌𝑥𝑥Communicate
with 𝐾𝐾′Alice

Communicate
with 𝐾𝐾′Bob

Adversary

• Transporting (malicious) public keys

MitM attacks (in General)

(𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴) 𝑝𝑝𝑘𝑘𝑘𝐴𝐴

Alice Bob

𝑝𝑝𝑘𝑘𝐴𝐴

Communicate
with 𝑝𝑝𝑝𝑝

Communicate
with 𝑝𝑝𝑘𝑘𝑘𝐴𝐴

(𝑝𝑝𝑘𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝑘𝐴𝐴) 𝑝𝑝𝑘𝑘𝑘𝐴𝐴

• Transporting (malicious) public keys

MitM attacks (in General)

(𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴) 𝑝𝑝𝑘𝑘𝑘𝐴𝐴

Alice Bob

𝑝𝑝𝑘𝑘𝐴𝐴

Communicate
with 𝑝𝑝𝑝𝑝

Communicate
with 𝑝𝑝𝑘𝑘𝑘𝐴𝐴

(𝑝𝑝𝑘𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝑘𝐴𝐴)

How can we
prevent MitM

attacks?

𝑝𝑝𝑘𝑘𝑘𝐴𝐴

• Signature Schemes

(𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠)

Signing
algorithm

𝑚𝑚 (message)

𝜎𝜎

𝑝𝑝𝑝𝑝

Verification
algorithm

accept
/reject

(𝑚𝑚,𝜎𝜎)

Digital Signature

• Signature Schemes

• Security: Unforgeability
• Unable to forge a valid signature on any message without 𝑠𝑠𝑠𝑠

(𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠)

Signing
algorithm

𝑚𝑚 (message)

𝜎𝜎

𝑝𝑝𝑝𝑝

Verification
algorithm

accept
/reject

(𝑚𝑚,𝜎𝜎)

Digital Signature

Case Study: ECDSA

• ECDSA (Elliptic Curve Digital Signature Algorithm): DSA based on Elliptic Curve

• ECDSA (based on EC) vs DSA (based on Module Integer Groups)

• Why do we prefer Elliptic Curve Groups over Module Integer Groups?
• Stronger: For example, a 256-bit elliptic curve key offers comparable security to a 3072-bit

RSA key...
• Shorter: Smaller key size => shorter ciphertext/signature, reducing bandwidth usage...
• Faster: Smaller key size => faster computations and lower computation overhead...

Case Study: ECDSA

• A quick background on Elliptic Curve Groups

• An elliptic curve 𝐸𝐸 is a plane curve which consists of the points satisfying the
equation:

• In Elliptic-Curve Cryptography (ECC), we use ECs over finite fields.
• Example: SECP256R1 (used in our example Python code)

𝐸𝐸: 𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏

Case Study: ECDSA

• ECDSA (Elliptic Curve Digital Signature Algorithm): DSA based on Elliptic Curve

• Public parameter (publicly known): (CURVE, 𝔾𝔾, 𝑔𝑔, 𝑝𝑝)
• CURVE: Tell the users what the elliptic curve and equations are being used.
• 𝔾𝔾,𝑔𝑔,𝑝𝑝 : A subgroup 𝔾𝔾 over CURVE with a large prime order 𝑝𝑝. The base point (generator)
𝑔𝑔 generates 𝔾𝔾.

• Key Generation:
• 𝑠𝑠𝑠𝑠 = 𝑑𝑑 ←$ ℤ𝑝𝑝∗ // (= {1, 2, …, p-1} , here “*” means that we exclude zero)
• 𝑝𝑝𝑝𝑝 = 𝑑𝑑 ∘ 𝑔𝑔 // “∘” is the “exponential operator” of Elliptic Curve, just like g^d.

and you cannot recover 𝑑𝑑 given 𝑑𝑑 ∘ 𝑔𝑔

• Signing algorithm (𝑠𝑠𝑠𝑠 = 𝑑𝑑: secret key,𝑚𝑚: message):
1) 𝑒𝑒′ = Hash 𝑚𝑚 // “Compress” the message and get its digest
2) 𝑒𝑒 = log2 𝑝𝑝 leftmost bits of 𝑒𝑒𝑒 // Truncate some bits to fit in the format
3) 𝑘𝑘 ←$ ℤ𝑝𝑝∗

4) 𝑥𝑥,𝑦𝑦 = 𝑘𝑘 ∘ 𝑔𝑔 // 𝑔𝑔 is the base point
5) 𝑟𝑟 = 𝑥𝑥 mod 𝑝𝑝 // Now r is an integer module p. Given x, y is determined.
6) Assert [𝑥𝑥 mod 𝑝𝑝 ≠ 0] // Make sure we do not get a “trivial point”
7) 𝑠𝑠 = 𝑘𝑘−1 ⋅ 𝑒𝑒 + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝 // Signing
8) return (𝑟𝑟, 𝑠𝑠)

Case Study: ECDSA

• Verification algorithm (𝑝𝑝𝑝𝑝: public key,𝑚𝑚: message, 𝑟𝑟, 𝑠𝑠 : signature):
1) 𝑒𝑒′ = Hash 𝑚𝑚 // “Compress” the message and get its digest
2) 𝑒𝑒 = log2 𝑝𝑝 leftmost bits of 𝑒𝑒𝑒 // Truncate some bits to fit in the format
3) 𝑢𝑢1 = 𝑒𝑒 ⋅ 𝑠𝑠−1 mod 𝑝𝑝
4) 𝑢𝑢2 = 𝑟𝑟 ⋅ 𝑠𝑠−1 mod 𝑝𝑝
5) 𝑥𝑥,𝑦𝑦 = 𝑢𝑢1 ∘ 𝑔𝑔 + 𝑢𝑢2 ∘ 𝑝𝑝𝑝𝑝 // Recalculate the point
6) Accept this signature if 𝑥𝑥 ≡ 𝑟𝑟 mod 𝑝𝑝 . Otherwise, reject.

Case Study: ECDSA

• Verification algorithm (𝑝𝑝𝑝𝑝: public key,𝑚𝑚: message, 𝑟𝑟, 𝑠𝑠 : signature):
1) 𝑒𝑒′ = Hash 𝑚𝑚 // “Compress” the message and get its digest
2) 𝑒𝑒 = log2 𝑝𝑝 leftmost bits of 𝑒𝑒𝑒 // Truncate some bits to fit in the format
3) 𝑢𝑢1 = 𝑒𝑒 ⋅ 𝑠𝑠−1 mod 𝑝𝑝
4) 𝑢𝑢2 = 𝑟𝑟 ⋅ 𝑠𝑠−1 mod 𝑝𝑝
5) 𝑥𝑥,𝑦𝑦 = 𝑢𝑢1 ∘ 𝑔𝑔 + 𝑢𝑢2 ∘ 𝑝𝑝𝑝𝑝 // Recalculate the point
6) Accept this signature if 𝑥𝑥 ≡ 𝑟𝑟 mod 𝑝𝑝 . Otherwise, reject.

• You can prove that the verification algorithm works correctly.
• ECDSA has unforgeability if the Discrete Logarithm Problem over the elliptic

curve is hard.

Case Study: ECDSA

• Do not reuse nonce in DSA(/Schnorr/SM2/...) !
• In DSA, nonce (the 𝑘𝑘 value) reuse => private key recovery => break the unforgeability

Case Study: ECDSA

• Do not reuse nonce in DSA(/Schnorr/SM2/...) !
• In DSA, nonce (the 𝑘𝑘 value) reuse => private key recovery => break the unforgeability

Case Study: ECDSA

𝑚𝑚1, (𝑟𝑟, 𝑠𝑠1) with nonce 𝑘𝑘
𝑚𝑚2, (𝑟𝑟, 𝑠𝑠2) with nonce 𝑘𝑘

Two DSA signatures
of different messages:

𝑠𝑠1 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚1) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝
𝑠𝑠2 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚2) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝 By DSA construction:

(Same value 𝑟𝑟 if 𝑘𝑘 is the same)

• Do not reuse nonce in DSA(/Schnorr/SM2/...) !
• In DSA, nonce (the 𝑘𝑘 value) reuse => private key recovery => break the unforgeability

Case Study: ECDSA

𝑚𝑚1, (𝑟𝑟, 𝑠𝑠1) with nonce 𝑘𝑘
𝑚𝑚2, (𝑟𝑟, 𝑠𝑠2) with nonce 𝑘𝑘

Two DSA signatures
of different messages:

𝑠𝑠1 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚1) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝
𝑠𝑠2 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚2) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝 By DSA construction:

(Same value 𝑟𝑟 if 𝑘𝑘 is the same)

Two equations,
two unknowns 𝑘𝑘 and 𝑑𝑑

Linear Algebra!

• Do not reuse nonce in DSA(/Schnorr/SM2/...) !
• In DSA, nonce (the 𝑘𝑘 value) reuse => private key recovery => break the unforgeability

Case Study: ECDSA

Two DSA signatures
of different messages:

By Linear Algebra:

By DSA construction:

𝑠𝑠1 𝑟𝑟
𝑠𝑠2 𝑟𝑟

𝑘𝑘
𝑑𝑑 = 𝐻𝐻(𝑚𝑚1)

𝐻𝐻(𝑚𝑚2) mod 𝑝𝑝

𝑚𝑚1, (𝑟𝑟, 𝑠𝑠1) with nonce 𝑘𝑘
𝑚𝑚2, (𝑟𝑟, 𝑠𝑠2) with nonce 𝑘𝑘 (Same value 𝑟𝑟 if 𝑘𝑘 is the same)

𝑠𝑠1 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚1) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝
𝑠𝑠2 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚2) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝

Two equations,
two unknowns 𝑘𝑘 and 𝑑𝑑

Linear Algebra!

• Do not reuse nonce in DSA(/Schnorr/SM2/...) !
• In DSA, nonce (the 𝑘𝑘 value) reuse => private key recovery => break the unforgeability

Case Study: ECDSA

Two DSA signatures
of different messages:

By Linear Algebra:

By DSA construction:

𝑚𝑚1, (𝑟𝑟, 𝑠𝑠1) with nonce 𝑘𝑘
𝑚𝑚2, (𝑟𝑟, 𝑠𝑠2) with nonce 𝑘𝑘 (Same value 𝑟𝑟 if 𝑘𝑘 is the same)

𝑠𝑠1 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚1) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝
𝑠𝑠2 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚2) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝

𝑘𝑘
𝑑𝑑 = 𝑠𝑠1 − 𝑠𝑠2 −1 ⋅ (𝐻𝐻 𝑚𝑚1 − 𝐻𝐻(𝑚𝑚2))

𝑟𝑟−1 ⋅ (𝑠𝑠1 ⋅ 𝑘𝑘 − 𝐻𝐻(𝑚𝑚1))
 mod 𝑝𝑝

• Do not reuse nonce in DSA(/Schnorr/SM2/...) !
• In DSA, nonce (the 𝑘𝑘 value) reuse => private key recovery => break the unforgeability

• Real-world event: Hacking the PlayStation 3 (2010-2011)...
• A typical example of: Provable secure in the theoretical world, but wrong implementation

in the real world.

Case Study: ECDSA

Two DSA signatures
of different messages:

By Linear Algebra:

By DSA construction:

𝑚𝑚1, (𝑟𝑟, 𝑠𝑠1) with nonce 𝑘𝑘
𝑚𝑚2, (𝑟𝑟, 𝑠𝑠2) with nonce 𝑘𝑘 (Same value 𝑟𝑟 if 𝑘𝑘 is the same)

𝑠𝑠1 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚1) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝
𝑠𝑠2 = 𝑘𝑘−1 ⋅ 𝐻𝐻(𝑚𝑚2) + 𝑟𝑟 ⋅ 𝑑𝑑 mod 𝑝𝑝

𝑘𝑘
𝑑𝑑 = 𝑠𝑠1 − 𝑠𝑠2 −1 ⋅ (𝐻𝐻 𝑚𝑚1 − 𝐻𝐻(𝑚𝑚2))

𝑟𝑟−1 ⋅ (𝑠𝑠1 ⋅ 𝑘𝑘 − 𝐻𝐻(𝑚𝑚1))
 mod 𝑝𝑝

• Other standard properties of Digital Signature:
• Authentication // Verify the identity...
• Publicly verifiable // Everyone with pk can verify the signature...
• Non-repudiation // A party cannot deny having sent or signed a message...
• ...

• One of the most important application: Digital Certificate

Digital Signature

Digital Certificate

• Certificate: A signature generated by a trusted party (In short)
• Verifies an ID and binds it to a public key
• Securely distribute public keys
• Issued by CA (Certificate Authority)

CA
Server

𝑠𝑠𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠

• Certificate: A signature generated by a trusted party (In short)
• Verifies an ID and binds it to a public key
• Securely distribute public keys
• Issued by CA (Certificate Authority)

CA
Server

𝑠𝑠𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝

The pk of CA is distributed
in a secure way in advance,

e.g., pre-installed in the operating
system or browser

Digital Certificate

• Certificate: A signature generated by a trusted party (In short)
• Verifies an ID and binds it to a public key
• Securely distribute public keys
• Issued by CA (Certificate Authority)

CA
Server

(Registration in
a secure way)

𝑠𝑠𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝
𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘𝐴𝐴]

Digital Certificate

• Certificate: A signature generated by a trusted party (In short)
• Verifies an ID and binds it to a public key
• Securely distribute public keys
• Issued by CA (Certificate Authority)

CA
Server

𝑠𝑠𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝
𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘𝐴𝐴]

𝑝𝑝𝑘𝑘𝐴𝐴, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘𝐴𝐴]

Digital Certificate

• Certificate: A signature generated by a trusted party (In short)
• Verifies an ID and binds it to a public key
• Securely distribute public keys
• Issued by CA (Certificate Authority)

CA
Server

𝑝𝑝𝑘𝑘𝐴𝐴, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘𝐴𝐴]

𝑠𝑠𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝
𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘𝐴𝐴]

Verify 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑘𝑘𝐴𝐴 using 𝑠𝑠𝑠𝑠𝑠𝑠
If valid, accept 𝑝𝑝𝑘𝑘𝐴𝐴

Digital Certificate

• Certificate: A signature generated by a trusted party (In short)
• Verifies an ID and binds it to a public key
• Securely distribute public keys
• Issued by CA (Certificate Authority)

CA
Server

(Communicate using 𝑝𝑝𝑘𝑘𝐴𝐴)

𝑠𝑠𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠

𝑝𝑝𝑘𝑘𝐴𝐴, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘𝐴𝐴]
𝑠𝑠𝑝𝑝𝑝𝑝

𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘𝐴𝐴]
𝑠𝑠𝑝𝑝𝑝𝑝

Digital Certificate

• What information does a certificate include?
• X.509 standard: defines the format of public key certificates.

• Export a certificate and run the example code ‘ReadCert.py’...

Signing
algorithm

𝑠𝑠𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠
CA server

• Alice’s identity and Alice’s pk
• Issuer
• Supporting algorithms
• Valid period, Serial Number, …

𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄[𝑝𝑝𝑘𝑘𝐴𝐴]

𝝈𝝈

Digital Certificate

• Root Certificate and Certificate Chains
• Hierarchical sequence of certificates
• Trace the authenticity of a certificate back to a trusted Root CA
• Only root certificates need to be pre-installed…

Digital Certificate

• Root Certificate and Certificate Chains
• Hierarchical sequence of certificates
• Trace the authenticity of a certificate back to a trusted Root CA
• Only root certificates need to be pre-installed…

𝑝𝑝𝑘𝑘3, 𝑠𝑠𝑘𝑘3

Root CA End server

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑟𝑟𝑟𝑟𝑟𝑟]
𝑟𝑟𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟

Intermediate CA 1 Intermediate CA 2
𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2

Digital Certificate

• Root Certificate and Certificate Chains
• Hierarchical sequence of certificates
• Trace the authenticity of a certificate back to a trusted Root CA
• Only root certificates need to be pre-installed…

𝑝𝑝𝑘𝑘3, 𝑠𝑠𝑘𝑘3

Root CA End server

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑟𝑟𝑟𝑟𝑟𝑟]
𝑟𝑟𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟

Intermediate CA 1 Intermediate CA 2
𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2

• Pre-installed pk
• Self-signed cert

Digital Certificate

• Root Certificate and Certificate Chains
• Hierarchical sequence of certificates
• Trace the authenticity of a certificate back to a trusted Root CA
• Only root certificates need to be pre-installed…

𝑝𝑝𝑘𝑘3, 𝑠𝑠𝑘𝑘3

Root CA End server

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘1]
𝑟𝑟𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟

Intermediate CA 1 Intermediate CA 2
𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2

signing𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑟𝑟𝑟𝑟𝑟𝑟]

Digital Certificate

• Root Certificate and Certificate Chains
• Hierarchical sequence of certificates
• Trace the authenticity of a certificate back to a trusted Root CA
• Only root certificates need to be pre-installed…

𝑝𝑝𝑘𝑘3, 𝑠𝑠𝑘𝑘3

Root CA End server

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]
𝑟𝑟𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟

Intermediate CA 1 Intermediate CA 2
𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2

signing𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑟𝑟𝑟𝑟𝑟𝑟] signing 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘1] signing 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘2]

Digital Certificate

• Root Certificate and Certificate Chains

𝑝𝑝𝑘𝑘3, 𝑠𝑠𝑘𝑘3 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]
Root CA End server

𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑟𝑟𝑟𝑟𝑟𝑟]
Intermediate CA 1 Intermediate CA 2
𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘1] 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘2]

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]

𝑟𝑟𝑟𝑟𝑟𝑟

Digital Certificate

• Root Certificate and Certificate Chains

𝑝𝑝𝑘𝑘3, 𝑠𝑠𝑘𝑘3 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]
Root CA End server

𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑟𝑟𝑟𝑟𝑟𝑟]
Intermediate CA 1 Intermediate CA 2
𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘1] 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘2]

…‘‘this certificate is
signed by CA 2’’…

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]

𝑟𝑟𝑟𝑟𝑟𝑟

Digital Certificate

• Root Certificate and Certificate Chains

𝑝𝑝𝑘𝑘3, 𝑠𝑠𝑘𝑘3 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]
Root CA End server

𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑟𝑟𝑟𝑟𝑟𝑟]
Intermediate CA 1 Intermediate CA 2
𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘1] 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘2]

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘2]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘1]

𝑟𝑟𝑟𝑟𝑟𝑟

Digital Certificate

• Root Certificate and Certificate Chains

𝑝𝑝𝑘𝑘3, 𝑠𝑠𝑘𝑘3 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]
Root CA End server

𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑟𝑟𝑟𝑟𝑟𝑟]
Intermediate CA 1 Intermediate CA 2
𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘1] 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘2]

𝑟𝑟𝑟𝑟𝑟𝑟, 𝑝𝑝𝑘𝑘1, 𝑝𝑝𝑘𝑘2, 𝑝𝑝𝑘𝑘3

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘3]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘2]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝𝑘𝑘1]

Verify them one by one
(until verifying the cert

issued by Root CA)

Digital Certificate

Signed DH Key Exchange (Next Lecture)

• Use signature to avoid MitM attacks on DHKE:

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑦𝑦 ←$ ℤ𝑞𝑞

𝑌𝑌 = 𝑔𝑔𝑦𝑦, 𝜎𝜎𝐵𝐵 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑠𝑠𝑘𝑘𝐵𝐵(𝑋𝑋,𝑌𝑌)

𝐾𝐾Alice = 𝑌𝑌𝑥𝑥 𝐾𝐾Bob = 𝑋𝑋𝑦𝑦

Alice Bob

(𝑝𝑝𝑘𝑘𝐵𝐵, 𝑠𝑠𝑘𝑘𝐵𝐵)(𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴)

𝑋𝑋 = 𝑔𝑔𝑥𝑥

Signed DH Key Exchange (Next Lecture)

• Use signature to avoid MitM attacks on DHKE:

𝑥𝑥 ←$ ℤ𝑞𝑞 𝑦𝑦 ←$ ℤ𝑞𝑞

𝜎𝜎𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑠𝑠𝑘𝑘𝐵𝐵(𝑋𝑋,𝑌𝑌)

𝑌𝑌 = 𝑔𝑔𝑦𝑦, 𝜎𝜎𝐵𝐵 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑠𝑠𝑘𝑘𝐵𝐵(𝑋𝑋,𝑌𝑌)

𝐾𝐾Alice = 𝑌𝑌𝑥𝑥 𝐾𝐾Bob = 𝑋𝑋𝑦𝑦

Alice Bob

(𝑝𝑝𝑘𝑘𝐵𝐵, 𝑠𝑠𝑘𝑘𝐵𝐵)(𝑝𝑝𝑘𝑘𝐴𝐴, 𝑠𝑠𝑘𝑘𝐴𝐴)

𝑋𝑋 = 𝑔𝑔𝑥𝑥

Verify 𝜎𝜎𝐴𝐴Verify 𝜎𝜎𝐵𝐵

Coding Tasks
1. Export a certificate from a website, and then use the example code ReadCert.py to

read the certificate.
2. Find and export a pre-installed certificate on your laptop or PC (via browser), and use

the example code to read the certificate.

Homework

• Implement a man-in-the-middle attack (in one program) on DHKE.

• Use the example code ‘ECDSA.py’ to demonstrate the nonce-reuse attack on ECDSA (i.e.,
recover the secret key given two valid signatures using the same randomness)

• Bonus: Implement a man-in-the-middle attack on DHKE using sockets.

• Bonus: Use a trusted server and signatures to securely exchange public keys (using sockets):
See next slide.

Homework

1. Alice and Bob each have the server’s public key pre-installed, which they will use to verify
the server's digital signatures.

2. To initiate the key exchange, Alice first requests the server to generate a digital signature
for her public key.

3. After receiving the signed public key from the server, Alice sends her public key and the
server’s signature to Bob.

4. Bob, upon receiving (pk_alice, signature of pk_alice), verifies the signature with the server’s
public key. If the signature is valid, Bob accepts pk_alice. Next, Bob requests a signature for
his own public key from the server, following a similar process as Alice.

5. Finally, Bob sends (pk_bob, signature of pk_bob) to Alice. Alice verifies the signature using
the server’s public key and, if valid, accepts pk_bob.

Further Reading

• DigiCert (one of the largest and most widely trusted CAs): https://www.digicert.com/
• Elliptic Curves: https://andrea.corbellini.name/2015/05/17/elliptic-curve-

cryptography-a-gentle-introduction/
• P-256 (secp256r1) curve: https://neuromancer.sk/std/nist/P-256
• The X.509 standard: https://en.wikipedia.org/wiki/X.509
• Public Key Infrastructure (PKI): https://en.wikipedia.org/wiki/Public_key_infrastructure

https://www.digicert.com/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://neuromancer.sk/std/nist/P-256
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Public_key_infrastructure

	Cryptography Engineering
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

