Cryptography Engineering

* Lecture 7 (Dec 04, 2024)

* Today’s notes:
* Password and password security
* Online attacks and Offline attacks
* Password Authentication, TLS + (hashed) password
e Salting, TLS + salted and hashed password

* Coding tasks/Homework:
* Offline dictionary attacks on Passwords
* Design a password authentication protocol

U
\"/

I KASSEL
RSITAT

Password and its Security

e Password:

“admin” “123456” “I'Your_Name][Your_Birthday]”

“root” “b8sdhazyn216fsgk.]02=2v4h”

* Widely used in practice

User name:

URXXXXXX

Password:

NI KASSEL
E

U
\"/ RSITAT

Password and its Security

* Why password security is important:

Within a couple of weeks, however, Adobe was forced to acknowledge
that a more accurate figure for the number of people who were

impacted by the hack was some 38 million active users after a 3.8GB _-—
file containing more than 150 million usernames/passwords was Facebook Stored Hundreds of Millions of User Passwords ...

dumped on the net. s oy 201 21 Mar 2019 — Hundreds of millions of Facebook users had their account passwords stored
in plain text and searchable by thousands of Facebook employees ...

m LinkedIn
https://www.linkedin.com » news » story » nearly-10-bill...

At the end of 2010, an incident that is known as CSDN Password
Nearly 10 billion passwords leaked Leakage Incident happened, and passwords from five websites,

In a leak that cybersecurity researchers are calling the largest of all time, almost 10 billion including CSDN, Tianya, Duduniu, 7k7k and 178.com, were leaked in
unique passwords have been posted to a hacking forum. several consecutive days.

The Biggest Password Leak in History , and all the leaked passwords are in plaintext. 20 aug 2014

In an unprecedented cyber security event, the largest password leak ever recorded has just
occurred, exposing over 10 billion passwords.

(source: Google search)

Password and its Security

* We would focus on How to
» Use passwords to authenticate...
» Securely transmit passwords...

» Securely store passwords...
> ...

Password and its Security

* Security Properties:
* Mainly used for authentication (e.g., hash and compare), easy to replace,...
* Short length, Human-generated, human-memorizable, Low Entropy
* Highly Reused

Password and its Security

* Low Entropy
* Lack of randomness, predictability, Short length, Limited character set,...
* Example: (Most people use their personal email as website accounts, e.g., Amazon, ...)

Account: “[YourName]@gmail.com”

“admin”, “1234567%, “hello123”, ...

» ¢«

“I'Your/Your Partner’s Name]_iloveu”, “[Your/Your Partner’s Name]_[Birthday]”, ...

»

“[Your Phone number]”, “[Family’s phone number]”...

“gwerty” (English keyboard), “qwertz” (German keyboard), ...

NI KASSEL
E

U
\"/ RSITAT

Password and its Security

* Low Entropy
* Lack of randomness, predictability, Short length, Limited character set,...
* Example: (Most people use their personal email as website accounts, e.g., Amazon, ...)

Account: “[YourName]@gmail.com”
“admin”, “123456”, “hello1237, ...

» ¢«

“I'Your/Your Partner’s Name]_iloveu”, “[Your/Your Partner’s Name]_[Birthday]”, ...

“[Your Phone number]”, “[Family’s phone number]”...

“gwerty” (English keyboard), “qwertz” (German keyboard), ...

e Short, patterned, no randomness, and highly related to personal information

NI KASSEL
E

U
\"/ RSITAT

Password and its Security

* Highly reused: Different portal, but the same password...

Account: Your Gmail
Password. *kkhkkkkkk*k

Steam
Online banking

PayPal

Facebook/LinkedIn

Some Fly-by-night
Website

Password and its Security

* Highly reused: Different portal, but the same password...

~

Steam

Online banking

PayPal
Account: Your Gmail

Pa SSWO rd o kkkkkikkk

Website

Password Dictionary

* Dictionary Attack:

* Attack (Guess) using password dictionaries
* Focus on known/common password combinations, more efficient than brute force...

braves

nascar abcd1234 bondee7
123456 e scorpion shelby alexis
password it dazusxed godzilla 1111111
12345678 xooox le1010 beaver samson
qwerty 123123123 N fred 5150
123456789 Eiche SR tomcat willie
12345 diablo 5 Lelrek august scorpio
1234 bulldog qaennis buddy bonnie

1234 slipknot :

111111 Clon qerty12: airborne gators
1234567 e booger 1993 beniamin
dragon hardcore asdf 1988 voodoo
123123 banana 1991 lifehack driver
baseball junior black 499999 dexter

hannah 2112
abc123 123654 startrek brooklyn -
football porsche 12341234 animal Jasen
monkey lakers cameron platinum -.(-;wa«lw\é«;w'vu
letmein Sceman newyerk phantom E?%IE%
696969 cmwzys rainbow online o5
shadow 987654 nathan xavier z;:islve
master london john darkness s dnea
666666 Tennis 1992 blink182 B HEX
awertyuiop nccize: r?il.(et power| 1989
123321 coffee N1KINE fish g
N scooby redskins asdfghik

& 0000 butthead grodi red123

1234567890 oooo.. 2d, 789456123 i
ichael asdfehik voyager
machaet tcl?éliﬂg . 1212 yag 4815162342
654321 gluzesr e police password
pussy branden peaches travis trouble
superman yamaha gemini 12qwaszx gunner
1gaz2wsx chester heaven happy

mathar snowball

lover

< C

0w

ASSEL
I TAT

Password Dictionary

* Construct a password dictionary:

“123456”, “admin”,
“zxcasd”, “gwer”,
“8888”, “password”,

€

Collect
O Qo

commonly used
passwords

v

NI KASSEL
E

U
\"/ RSITAT

Password Dictionary

* Construct a password dictionary:

O,
BN

Personal Information
Name: Thomas Jasper o
Phone: +49 1573 1234567 O

Birthdate: January 21, 1922 “Thomas21011922”

“Jasper15731234567,
“TomJ21017,...

v

NI KASSEL
E

U
\"/ RSITAT

Password Dictionary

* Construct a password dictionary:

(Passwords stored
in plaintext)

Online Dictionary Attack

—r
»

Account: runzhizeng@gmail.com
password: [pw from the dictionary]
\
=_1

Password guessing using the dictionary

* Online dictionary attack
* Attempt passwords from the dictionary until success
* Require Online connections: Verify guess via interacting with the legitimate system

NI KASSEL
E

U
\"/ RSITAT

mailto:runzhizeng@gmail.com

Online Dictionary Attack

Account: runzhizeng@gmail.com
password: [pw from the dictionary]
AN —
I

L~

Password guessing using the dictionary

* Online dictionary attack
* Attempt passwords from the dictionary until success

* Require Online connections: Verify guess via interacting with the legitimate system
* Unavoidable (in most of cases), but Detectable and Accountable
* Non-cryptographic solution: Limit failed trials

UNIKASSEL
V E

RSITAT

mailto:runzhizeng@gmail.com

Offline Dictionary Attack

e f
‘\ unc_pw

= F(“RunzhiZeng123456”)

F is some publicly

known function with
collision resistance

e Offline dictionary attack

Offline Dictionary Attack

e :
‘\ unc_pw

i s s s s - = F(“RunzhiZeng123456”)
=__|
Try all passwords from the dictionary F is some publicly
until find a pw such that known function with

F(pw) = func_pw collision resistance

e Offline dictionary attack
* Attempt passwords from the dictionary until success

Offline Dictionary Attack

e :
‘\ unc_pw

i s s s s - = F(“RunzhiZeng123456”)
=__|
Try all passwords from the dictionary F is some publicly
until find a pw such that known function with

F(pw) = func_pw collision resistance

e Offline dictionary attack
* Attempt passwords from the dictionary until success
* Offline-Performable: Verify guess without interacting with the legitimate system
* Hard to detect and account

Offline Dictionary Attack

func_pw
= F(“RunzhiZeng123456”)
=1

Try all passwords from the dictionary
until find a pw such that
F(pw) =func_pw

F is some publicly

known function with
collision resistance

e Offline dictionary attack
* Attempt passwords from the dictionary until success

* Offline-Performable: Verify guess without interacting with the legitimate system
* Hard to detect and account

* Primary Goal of designing secure password-based cryptosystems: resist offline attacks

Offline Dictionary Attack

* Example: Does this login system resist offline attacks?

Account = “admin” @ H is some secure admin pw
password = pw m hash function Runzhi pw;
where pw is some string T W,

1. hash_pw = H(pw)

LoginRequest = (“admin”, hash_pw)

A 4

2. local_hash_pw =H(pw),

// where pw is the password of
“admin” from the local database
3. If local_hash_pw == hash_pw:
4. Accept
5. Else: Reject

ASSE

U I K L
\"/ RSITAT

Offline Dictionary Attack

* Example: Does this login system resist offline attacks?

Account = “admin” @ H is some secure admin pw
password = pw m hash function Runzhi pw;
where pw is some string T W,

1. hash_pw = H(pw)

LoginRequest = (“admin”, hash_pw)

[
»

2. local_hash_pw =H(pw),

g
.
.
.s
.
.s
.s
.

.
.s
Py
.t
.
Py
.s
.

‘ _______ // where pw is the password of

1 Q i Eavesdropping “admin” from the local database

=3 3. If local_hash_pw == hash_pw:
4. Accept

Try all pw from the dictionary until

find a match: H(pw) == hash_pw 5. Else: Reject

NI KASSEL
E

U
\"/ RSITAT

Offline Dictionary Attack

* Example: Does this login system resist offline attacks?

Account = “admin” @ H is some secure
password = pw m hash function
where pw is some string

1. hash_pw = H(pw)

LoginRequest = (“admin”, hash_pw)

A 4

admin H(pw)
Runzhi H(pw,)
Tom H(pwsy)

// H(pw) is the hashed password of
“admin” from the local database

2. If H(pw) == hash_pw:

3. Accept

4. Else: Reject

Offline Dictionary Attack

* Example: Does this login system resist offline attacks?

Account = “admin” @ H is some secure
password = pw m hash function
where pw is some string

1. hash_pw = H(pw)

LoginRequest = (“admin”, hash_pw)

A quick question: Can |l use

hash function without collision-resistance
to instantiate this system ?

A 4

admin H(pw)
Runzhi H(pw,)
Tom H(pw,)

// H(pw) is the hashed password of
“admin” from the local database

2. If H(pw) == hash_pw:

3. Accept

4. Else: Reject

Offline Dictionary Attack

* Example: Does this login system resist offline attacks?

Account =“admin” @ Kis some publicly admin pw
password = pw m known symmetric key Runzhi pWy
where pw is some string T pW,

1. enc_pw = AEAD(K, pw)

LoginRequest = (“admin”, enc_pw)

A 4

2. local_enc_pw = AEAD(K, pw),
// where pw is the password of

“admin” from the local database

3. If local_enc_pw ==enc_pw:

4. Accept

5. Else: Reject

ASSE

U I K L
\"/ RSITAT

Offline Dictionary Attack

* Example: Does this login system resist offline attacks?

Account = “admin” @ > Zieliuiln pw
password = pw m Run TLS handshake to Runzhi pWy
where pw is some string) share a handshake key K Tom —

1. enc_pw = AEAD(K, pw)

LoginRequest = (“admin”, enc_pw) 2. local_enc_pw = AEAD(K, pw),
// where pw is the password of

“admin” from the local database
3. If local_enc_pw ==enc_pw:

4. Accept

5. Else: Reject

v

A Summary about Online/Offline Dictionary Attack

- Online Dictionary Attack Offline Dictionary Attack

Based on pre-constructed dictionaries

Type of Interaction

Accountability

Detectability

Security
consideration

Solution

Have to be online,
one guess
= one interaction with the server

Easy
Easy

Unavoidable

Restrict the number of
failed attempts, ...

Offline, can be performed locally

Hard
Hard

Primary Goal:
resist offline attacks

Need cryptographic techniques!

Authentication using Passwords

* Most common practice: TLS + password (e.g., widely used in HTTPs login)

Account = “Runzhi” @ > Runzhi pw
password = pw m Run TLS handshake to Tom W,
where pw is some string) share a handshake key K
Login Request = (“Runzhi”, pw)
(Encrypted by the TLS handshake key K)
UNIKASSEL
VERSITAT

Authentication using Passwords

* Most common practice: TLS + password (e.g., widely used in HTTPs login)

Account = “Runzhi” @ > Runzni Py
password = pw Run TLS handshake to Tom pw,
where pw is some string m) share a handshake key K

Login Request = (“Runzhi”, pw)

(Encrypted by the TLS handshake key K)

* Advantage: Easy to implement, rely on TLS, ...
* Disadvantage: Passwords are stored in plaintext

NI KASSEL
E

U
\"/ RSITAT

Authentication using Passwords

* Most common practice: TLS + password (e.g., widely used in HTTPs login)

(ser Lpssovord
Account = “Runzhi” @

Runzhi H(pw)
= Run TLS handshake to Tom H(pws)
password = pw m g pw;

v

where pw is some string share a handshake key K

y 3

Login Request = (“Runzhi”, H(pw))

(Encrypted by the TLS handshake key K)

* Now the server stores the hashes of passwords...
* What happens if the database is compromised?

Authentication using Passwords

* Most common practice: TLS + password (e.g., widely used in HTTPs login)

Account = “Runzhi” >
password = pw @ Run TLS handshake to
where pw is some string m share a handshake key K

y 3

Login Request = (“Runzhi”, H(pw))

(Encrypted by the TLS handshake key K)

* Now the server stores the hashes of passwords...
* Note: Generally, passwords are reused across different servers..

@ Ru nzhi
% Runzhl

G{

H(pw)
H(pwy)

H(pw)
H(pws)

Password Storage and Salting

Runzhi ~ H(pw) ~-... =~ O<TX1 ..—~~* Runzhi H(pw)
Tom H(pw,) N/ = Bob H(pws)

Store hashes of passwords v.s Store passwords in plaintext
« The formerone is almost as insecure as the latter one if different servers store hashes of passwords
 Why: Just storing hashes can lead to cross-system compromise, making it nearly as insecure as
storing plaintext passwords.

NI KASSEL
E

U
\"/ RSITAT

Password Storage and Salting

Runzhi ~ H(pw) ~-... =~ O<TX1 ..—~~* Runzhi H(pw)
Tom H(pw,) N/ = Bob H(pws)

Store hashes of passwords v.s Store passwords in plaintext
« The formerone is almost as insecure as the latter one if different servers store hashes of passwords

Why: Just storing hashes can lead to cross-system compromise, making it nearly as insecure as
storing plaintext passwords.

* Solution: Salting (i.e., store salted hashes of passwords)

Password Storage and Salting

Runzhi H(pw)
Tom H(pws)

Runzhi H(pw)
Bob H(pws)

s

Password Storage and Salting

Runzhi r,H(r,pw)

Tom 15, H(1ry, pwy)

=

r,r,, v, 15 are independently
random strings (salt)

Runzhi r', H(@',pw)

Tom Ty, H(r5, pwy)

=

Password Storage and Salting

Runzhi r,Hr,pw) .. 0] .. » Runzhi r', H(@',pw)
"""""" N X
Tom o, H(ry, pw,) Tom Ty, H(r5, pwy)

Resistance to cross-system compromise

r,r,, v, 15 are independently
random strings (salt)

Authentication using Salted Hashes of Passwords

 TLS + salted hashes password

(ser [password
Account = “Runzhi” @ Runzhi r, H(r,pw)
Run TLS handshake to

password = pw Tom 1y, H (19, pW5)
where pw is some string m share a handshake key K

v

(Encrypted by the TLS handshake key K)

Authentication using Salted Hashes of Passwords

 TLS + salted hashes password

Account = “Runzhi” @ > Runzhi r,H(r,pw)

password = pw m Run TLS handshake to Tom vy, H(ry, DW5)

where pw is some string share a handshake key K

The server should send
the salt of the user in
every time it logs in
(Encrypted by the TLS handshake key K)

UNIKASSEL
VERSITAT

Coding tasks

e Perform offline dictionary attacks. Suppose | leaked a SHA3-256 hash of my password (i.e.,
hash_pw = SHA3-256([my password])) and the password is in a dictionary (in the example
code). The hexadecimal value (lower case) of the hash_pw is

e8acff88511d7f8e48f038001¢c24d7b1ab76d9233d7894fa936¢c4¢c7¢93d2¢c917

e Trytorecover my password.

NI KASSEL
E

U
\"/ RSITAT

Homework

e Design a password-based login protocol and try analyzing it.

» You should specify (1) How the server stores passwords (2) The message flow of the protocol (3) How
the server verifies.

» Analyze the security of your protocol (e.g., can it resist offline dictionary attacks?)

» Hint: You may add some nonces in your protocol

e |mplementyour login system using sockets.
» The “password database” of the server couble be a text file where each row is

([User_name], [Password/Hash_of_password/salted_hash_of _password])

NI KASSEL
E

U
\"/ RSITAT

	Slide 1: Cryptography Engineering
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

