
Cryptography Engineering
• Lecture 7 (Dec 04, 2024)

• Today’s notes:
• Password and password security
• Online attacks and Offline attacks
• Password Authentication, TLS + (hashed) password
• Salting, TLS + salted and hashed password

• Coding tasks/Homework:
• Offline dictionary attacks on Passwords
• Design a password authentication protocol

• Password:

• Widely used in practice

Password and its Security

“admin”

“root”

“[Your_Name][Your_Birthday]”“123456”

“b8sdhazyn216fsgk.]02=2v4h”

• Why password security is important:

Password and its Security

(source: Google search)

• We would focus on How to
➢Use passwords to authenticate...
➢Securely transmit passwords...
➢Securely store passwords...
➢ ...

Password and its Security

• Security Properties:
• Mainly used for authentication (e.g., hash and compare), easy to replace,...
• Short length, Human-generated, human-memorizable, Low Entropy
• Highly Reused
• ...

Password and its Security

• Low Entropy
• Lack of randomness, predictability, Short length, Limited character set,...
• Example: (Most people use their personal email as website accounts, e.g., Amazon, ...)

Password and its Security

Account: “[YourName]@gmail.com”

“[Your/Your Partner’s Name]_iloveu”, “[Your/Your Partner’s Name]_[Birthday]”, ...

“qwerty” (English keyboard), “qwertz” (German keyboard), ...

“admin”, “123456”, “hello123”, ...

“[Your Phone number]”, “[Family’s phone number]”...

• Low Entropy
• Lack of randomness, predictability, Short length, Limited character set,...
• Example: (Most people use their personal email as website accounts, e.g., Amazon, ...)

• Short, patterned, no randomness, and highly related to personal information

Password and its Security

Account: “[YourName]@gmail.com”

“[Your/Your Partner’s Name]_iloveu”, “[Your/Your Partner’s Name]_[Birthday]”, ...

“qwerty” (English keyboard), “qwertz” (German keyboard), ...

“admin”, “123456”, “hello123”, ...

“[Your Phone number]”, “[Family’s phone number]”...

• Highly reused: Different portal, but the same password...

Password and its Security

Steam

PayPal
Account: Your Gmail
Password: ********

Online banking

Some Fly-by-night
Website

⋮

Facebook/LinkedIn

• Highly reused: Different portal, but the same password...

Password and its Security

Steam

PayPal

Online banking

Facebook/LinkedIn

Some Fly-by-night
Website

⋮

Leakage

Account: Your Gmail
Password: ********

Password Dictionary

• Dictionary Attack:
• Attack (Guess) using password dictionaries
• Focus on known/common password combinations, more efficient than brute force...

.

• Construct a password dictionary:

“123456”, “admin”,
“zxcasd”, “qwer”,

“8888”, “password”,
“

Collect

commonly used
passwords

Password Dictionary

• Construct a password dictionary:

Personal Information
Name: Thomas Jasper
Phone: +49 1573 1234567
Birthdate: January 21, 1922
...

.

“Thomas21011922”,
“Jasper1573123456”,

“TomJ2101”,...

Password Dictionary

• Construct a password dictionary:

.

Password Dictionary

Leakage

(Passwords stored
in plaintext)

Online Dictionary Attack

.

• Online dictionary attack
• Attempt passwords from the dictionary until success
• Require Online connections: Verify guess via interacting with the legitimate system

Account: runzhizeng@gmail.com
password: [pw from the dictionary]

Password guessing using the dictionary

mailto:runzhizeng@gmail.com

Online Dictionary Attack

.

• Online dictionary attack
• Attempt passwords from the dictionary until success
• Require Online connections: Verify guess via interacting with the legitimate system
• Unavoidable (in most of cases), but Detectable and Accountable
• Non-cryptographic solution: Limit failed trials

Account: runzhizeng@gmail.com
password: [pw from the dictionary]

Password guessing using the dictionary

mailto:runzhizeng@gmail.com

Offline Dictionary Attack

.

• Offline dictionary attack

func_pw
= F(“RunzhiZeng123456”)

F is some publicly
known function with
collision resistance

Offline Dictionary Attack

.

• Offline dictionary attack
• Attempt passwords from the dictionary until success

func_pw
= F(“RunzhiZeng123456”)

Try all passwords from the dictionary
until find a pw such that

F(pw) = func_pw

F is some publicly
known function with
collision resistance

Offline Dictionary Attack

.

• Offline dictionary attack
• Attempt passwords from the dictionary until success
• Offline-Performable: Verify guess without interacting with the legitimate system
• Hard to detect and account

func_pw
= F(“RunzhiZeng123456”)

Try all passwords from the dictionary
until find a pw such that

F(pw) = func_pw

F is some publicly
known function with
collision resistance

Offline Dictionary Attack

.

• Offline dictionary attack
• Attempt passwords from the dictionary until success
• Offline-Performable: Verify guess without interacting with the legitimate system
• Hard to detect and account
• Primary Goal of designing secure password-based cryptosystems: resist offline attacks

func_pw
= F(“RunzhiZeng123456”)

Try all passwords from the dictionary
until find a pw such that

F(pw) = func_pw

F is some publicly
known function with
collision resistance

Offline Dictionary Attack

• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒘
where 𝑝𝑤 is some string

LoginRequest = (“admin”, hash_pw)

H is some secure
hash function

1. hash_pw = H(𝒑𝒘)

2. local_hash_pw = H(𝑝𝑤),
 // where 𝑝𝑤 is the password of
“admin” from the local database
3. If local_hash_pw == hash_pw:
4. Accept
5. Else: Reject

User password

admin 𝒑𝒘

Runzhi 𝑝𝑤1

Tom 𝑝𝑤2

... ...

Offline Dictionary Attack

• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒘
where 𝑝𝑤 is some string

LoginRequest = (“admin”, hash_pw)

H is some secure
hash function

1. hash_pw = H(𝒑𝒘)

2. local_hash_pw = H(𝑝𝑤),
 // where 𝑝𝑤 is the password of
“admin” from the local database
3. If local_hash_pw == hash_pw:
4. Accept
5. Else: Reject

User password

admin 𝒑𝒘

Runzhi 𝑝𝑤1

Tom 𝑝𝑤2

... ...

. Eavesdropping

Try all pw from the dictionary until
find a match: H(pw) == hash_pw

Offline Dictionary Attack

• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒘
where 𝑝𝑤 is some string

LoginRequest = (“admin”, hash_pw)

H is some secure
hash function

1. hash_pw = H(𝒑𝒘)

// 𝑯(𝑝𝑤) is the hashed password of
“admin” from the local database
2. If 𝑯(𝑝𝑤) == hash_pw:
3. Accept
4. Else: Reject

User password

admin 𝑯(𝒑𝒘)

Runzhi 𝐻(𝑝𝑤1)

Tom 𝐻(𝑝𝑤2)

... ...

Offline Dictionary Attack

• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒘
where 𝑝𝑤 is some string

LoginRequest = (“admin”, hash_pw)

H is some secure
hash function

1. hash_pw = H(𝒑𝒘)

// 𝑯(𝑝𝑤) is the hashed password of
“admin” from the local database
2. If 𝑯(𝑝𝑤) == hash_pw:
3. Accept
4. Else: Reject

User password

admin 𝑯(𝒑𝒘)

Runzhi 𝐻(𝑝𝑤1)

Tom 𝐻(𝑝𝑤2)

... ...

A quick question: Can I use
hash function without collision-resistance

to instantiate this system ?

Offline Dictionary Attack

• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒘
where 𝑝𝑤 is some string

LoginRequest = (“admin”, enc_pw)

K is some publicly
known symmetric key

1. enc_pw = AEAD(K, 𝒑𝒘)

2. local_enc_pw = AEAD(K, 𝑝𝑤),
 // where 𝑝𝑤 is the password of
“admin” from the local database
3. If local_enc_pw == enc_pw:
4. Accept
5. Else: Reject

User password

admin 𝒑𝒘

Runzhi 𝑝𝑤1

Tom 𝑝𝑤2

... ...

Offline Dictionary Attack

• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒘
where 𝑝𝑤 is some string

LoginRequest = (“admin”, enc_pw)

1. enc_pw = AEAD(K, 𝒑𝒘)

2. local_enc_pw = AEAD(K, 𝑝𝑤),
 // where 𝑝𝑤 is the password of
“admin” from the local database
3. If local_enc_pw == enc_pw:
4. Accept
5. Else: Reject

User password

admin 𝒑𝒘

Runzhi 𝑝𝑤1

Tom 𝑝𝑤2

... ...

Run TLS handshake to
share a handshake key K

A Summary about Online/Offline Dictionary Attack

Online Dictionary Attack Offline Dictionary Attack

Based on pre-constructed dictionaries

Type of Interaction
Have to be online,

one guess
= one interaction with the server

Offline, can be performed locally

Accountability Easy Hard

Detectability Easy Hard

Security
consideration Unavoidable Primary Goal:

resist offline attacks

Solution Restrict the number of
failed attempts, ... Need cryptographic techniques!

Authentication using Passwords

• Most common practice: TLS + password (e.g., widely used in HTTPs login)

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

User password

Runzhi 𝒑𝒘

Tom 𝑝𝑤2

... ...

Run TLS handshake to
share a handshake key K

Login Request = (“Runzhi”, 𝒑𝒘)

(Encrypted by the TLS handshake key K)

Authentication using Passwords

• Most common practice: TLS + password (e.g., widely used in HTTPs login)

• Advantage: Easy to implement, rely on TLS, ...
• Disadvantage: Passwords are stored in plaintext

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

Run TLS handshake to
share a handshake key K

(Encrypted by the TLS handshake key K)

User password

Runzhi 𝒑𝒘

Tom 𝑝𝑤2

... ...

Login Request = (“Runzhi”, 𝒑𝒘)

Authentication using Passwords

• Most common practice: TLS + password (e.g., widely used in HTTPs login)

• Now the server stores the hashes of passwords...
• What happens if the database is compromised?

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

User password

Runzhi 𝑯(𝒑𝒘)

Tom 𝐻(𝑝𝑤2)

... ...

Run TLS handshake to
share a handshake key K

Login Request = (“Runzhi”, H(𝒑𝒘))

(Encrypted by the TLS handshake key K)

Authentication using Passwords

• Most common practice: TLS + password (e.g., widely used in HTTPs login)

• Now the server stores the hashes of passwords...
• Note: Generally, passwords are reused across different servers...

Run TLS handshake to
share a handshake key K

(Encrypted by the TLS handshake key K)

User password

Runzhi 𝑯(𝒑𝒘)

Tom 𝐻(𝑝𝑤2)

... ...

User password

Runzhi 𝑯(𝒑𝒘)

Bob 𝐻(𝑝𝑤3)

... ...

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

Login Request = (“Runzhi”, H(𝒑𝒘))

Password Storage and Salting

User password

Runzhi 𝑯(𝒑𝒘)

Tom 𝐻(𝑝𝑤2)

... ...

User password

Runzhi 𝑯(𝒑𝒘)

Bob 𝐻(𝑝𝑤3)

... ...

Store hashes of passwords v.s Store passwords in plaintext
• The former one is almost as insecure as the latter one if different servers store hashes of passwords
• Why: Just storing hashes can lead to cross-system compromise, making it nearly as insecure as

storing plaintext passwords.

Password Storage and Salting

User password

Runzhi 𝑯(𝒑𝒘)

Tom 𝐻(𝑝𝑤2)

... ...

User password

Runzhi 𝑯(𝒑𝒘)

Bob 𝐻(𝑝𝑤3)

... ...

Store hashes of passwords v.s Store passwords in plaintext
• The former one is almost as insecure as the latter one if different servers store hashes of passwords
• Why: Just storing hashes can lead to cross-system compromise, making it nearly as insecure as

storing plaintext passwords.

• Solution: Salting (i.e., store salted hashes of passwords)

Password Storage and Salting

User password

Runzhi 𝐻(𝑝𝑤)

Tom 𝐻(𝑝𝑤2)

... ...

User password

Runzhi 𝐻(𝑝𝑤)

Bob 𝐻(𝑝𝑤3)

... ...

Password Storage and Salting

User password

Runzhi 𝒓,𝐻(𝒓, 𝑝𝑤)

Tom 𝒓𝟐, 𝐻(𝒓𝟐, 𝑝𝑤2)

... ...

User password

Runzhi 𝒓′, 𝐻(𝒓′, 𝑝𝑤)

Tom 𝒓𝟐
′ , 𝐻(𝒓𝟐

′ , 𝑝𝑤2)

... ...

𝒓, 𝒓2, 𝒓′, 𝒓𝟐
′ are independently

random strings (salt)

Password Storage and Salting

User password

Runzhi 𝒓,𝐻(𝒓, 𝑝𝑤)

Tom 𝒓𝟐, 𝐻(𝒓𝟐, 𝑝𝑤2)

... ...

User password

Runzhi 𝒓′, 𝐻(𝒓′, 𝑝𝑤)

Tom 𝒓𝟐
′ , 𝐻(𝒓𝟐

′ , 𝑝𝑤2)

... ...

𝒓, 𝒓2, 𝒓′, 𝒓𝟐
′ are independently

random strings (salt)

• Resistance to cross-system compromise

Authentication using Salted Hashes of Passwords

• TLS + salted hashes password

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

User password

Runzhi 𝒓,𝑯(𝒓, 𝒑𝒘)

Tom 𝑟2, 𝐻(𝑟2, 𝑝𝑤2)

... ...

Run TLS handshake to
share a handshake key K

H(𝒓, 𝒑𝒘)

(Encrypted by the TLS handshake key K)

𝒓

LoginRequest = “Runzhi”

Authentication using Salted Hashes of Passwords

• TLS + salted hashes password

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

User password

Runzhi 𝒓,𝑯(𝒓, 𝒑𝒘)

Tom 𝑟2, 𝐻(𝑟2, 𝑝𝑤2)

... ...

Run TLS handshake to
share a handshake key K

H(𝒓, 𝒑𝒘)

(Encrypted by the TLS handshake key K)

𝒓

LoginRequest = “Runzhi”

The server should send
the salt of the user in
every time it logs in

Coding tasks

• Perform offline dictionary attacks. Suppose I leaked a SHA3-256 hash of my password (i.e.,
hash_pw = SHA3-256([my password])) and the password is in a dictionary (in the example
code). The hexadecimal value (lower case) of the hash_pw is

e8acff88511d7f8e48f038001c24d7b1ab76d9233d7894fa936c4c7c93d2c917

• Try to recover my password.

Homework

• Design a password-based login protocol and try analyzing it.

➢ You should specify (1) How the server stores passwords (2) The message flow of the protocol (3) How
the server verifies.

➢ Analyze the security of your protocol (e.g., can it resist offline dictionary attacks?)

➢Hint: You may add some nonces in your protocol

• Implement your login system using sockets.

➢ The “password database” of the server couble be a text file where each row is

 ([User_name], [Password/Hash_of_password/salted_hash_of_password])

	Slide 1: Cryptography Engineering
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

