
Cryptography Engineering 
• Lecture 8 (Dec 11, 2024)
• Today’s notes:

• Protocol Study: The SCRAM protocol
• Password-based Authenticated Key Exchange (PAKE) 
• An (In)secure Example: Encrypted-key-exchange protocol
• Protocol study: The SRP protocol

• Coding tasks/Homework:
• Implement the SCRAM protocol
• Bonus: Informal analysis of SRP
• Bonus: Implement pre-computation attacks on SRP



• TLS + salted & hashed passwords
• Use TLS to protect the transmission of pw
• No TLS handshake key => Cannot launch offline dictionary attacks

TLS + Salted Hashes of Passwords

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

Run TLS handshake to 
share a handshake key K 

H(𝒓, 𝒑𝒘)
(Encrypted by the TLS handshake key K)

𝒓

LoginRequest = “Runzhi”

User password_file

Runzhi 𝒓, 𝑯(𝒓, 𝒑𝒘)

Tom 𝑟2, 𝐻(𝑟2, 𝑝𝑤2)

... ...



• TLS + salted & hashed passwords
• Use TLS to protect the transmission of pw
• No TLS handshake key => Cannot launch offline dictionary attacks

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

Run TLS handshake to 
share a handshake key K 

H(𝒓, 𝒑𝒘)
(Encrypted by the TLS handshake key K)

𝒓

LoginRequest = “Runzhi”

If the database is compromised,
 then one can launch offline dictionary attack...

User password_file

Runzhi 𝒓, 𝑯(𝒓, 𝒑𝒘)

Tom 𝑟2, 𝐻(𝑟2, 𝑝𝑤2)
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• TLS + salted & hashed passwords
• Use TLS to protect the transmission of pw
• No TLS handshake key => Cannot launch offline dictionary attacks

Account = “Runzhi”
password = 𝒑𝒘
where 𝑝𝑤 is some string

User password_file

Runzhi 𝒓, 𝑯(𝒓, 𝒑𝒘)

Tom 𝑟2, 𝐻(𝑟2, 𝑝𝑤2)

... ...

Run TLS handshake to 
share a handshake key K 

H(𝒓, 𝒑𝒘)
(Encrypted by the TLS handshake key K)

𝒓

LoginRequest = “Runzhi”

If the database is compromised,
 then one can launch offline dictionary attack... Is it possible to increase the 

difficulty of offline attacks?

TLS + Salted Hashes of Passwords



• Salted Challenge Response Authentication Mechanism

• Main idea: 
1. Add iteration in computing salted & hashed password
2. Challenge-response Mechanism
3. Run over TLS

• Other Important Features:
➢  Inherent Resistance to Replay Attacks
 (TLS + salted & hashed passwords resists replay attacks because of TLS, while SCRAM 
resists replay attacks inherently, independent of the transport layer.)
➢  Mutual Authentication

The SCRAM protocol



• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary 
attacks

𝒑𝒘

password_file = [ 𝒓, 𝑯 𝒑𝒘, 𝒓  ]

Running time: 𝑻



• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary 
attacks

𝒑𝒘

password_file = [ 𝒓, 𝑯 𝒑𝒘, 𝒓  ]

Running time: 𝑻

password_file = [ 𝒓, 𝑯𝟐 𝒑𝒘, 𝒓  ]
where 𝐻2 𝑝𝑤, 𝑟 = 𝐻(𝑝𝑤, 𝐻(𝑝𝑤, 𝑟))



• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary 
attacks

𝒑𝒘

password_file = [ 𝒓, 𝑯 𝒑𝒘, 𝒓  ]

Running time: 𝑻

Offline dictionary 
attacks

𝒑𝒘

password_file = [ 𝒓, 𝑯𝟐 𝒑𝒘, 𝒓  ]
where 𝐻2 𝑝𝑤, 𝑟 = 𝐻(𝑝𝑤, 𝐻(𝑝𝑤, 𝑟))

Running time: 𝟐 ⋅ 𝑻



• Add iteration in computing salted & hashed password:

The SCRAM protocol

Iterate_hash_with_salt( password,  salt, num_of_iteration):
// salt can be 16- or 32-byte
// num_of_iteration can be 4096 or even 100,000
// All variable are bytes with big-endian order

𝑝𝑤 = password
padded_salt = salt || b'\x00\x00\x00\x01' // Append a 4-byte string 0x00000001 (in hex)

ℎ𝑎𝑠ℎ1 = HMAC(𝑝𝑤, padded_salt) // We use keyed HMAC, where the key to HMAC is the password
For 𝑖 from 2 to num_of_iteration:     // Iteratively evaluate the HMAC of pw and previous HMAC

ℎ𝑎𝑠ℎ𝑖 = HMAC(𝑝𝑤, ℎ𝑎𝑠ℎ𝑖−1)

Password_file = ℎ𝑎𝑠ℎ1 ⊕ ℎ𝑎𝑠ℎ2 ⊕ ⋯ ⊕ ℎ𝑎𝑠ℎnum_of_iteration // One integrate this part into the loop
return Password_file



• Add iteration in computing salted & hashed password:

The SCRAM protocol

A simpler description:
(using the notation 𝑯𝒏 𝒑𝒘, 𝒓  = Iterate_hash_with_salt( 𝒑𝒘, 𝒓, 𝒏 ) 

Given 𝒓, 𝒏, 𝒑𝒘: 

U1  = 𝐇𝐌𝐀𝐂(𝒑𝒘, 𝒓 || b'\x00\x00\x00\x01’) 
U2  = 𝐇𝐌𝐀𝐂(𝒑𝒘, U1) 
⋮
U𝑖−1  = 𝐇𝐌𝐀𝐂(𝒑𝒘, U𝑖−2) 
U𝑖  = 𝐇𝐌𝐀𝐂(𝒑𝒘, U𝑖−1)

We compute 𝑯𝒏 𝒑𝒘, 𝒓 = U1 ⊕ U2 ⊕ ⋯ ⊕ Un−1 ⊕ Un



• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary 
attacks

𝒑𝒘

password_file = [ 𝒓, 𝑯 𝒑𝒘, 𝒓  ]
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• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary 
attacks

𝒑𝒘

password_file 
= [ 𝒓, 𝒏, 𝑯𝒏 𝒑𝒘, 𝒓  ]

where 𝐻𝑛 𝑝𝑤, 𝑟 = Iterate_hash_with_salt(𝑝𝑤, 𝑟, 𝑛)

Offline dictionary 
attacks

𝒑𝒘

password_file = [ 𝒓, 𝑯 𝒑𝒘, 𝒓  ]

Running time: 𝑻 Running time: 𝒏 ⋅ 𝑻



• Add iteration in computing salted & hashed password:

The SCRAM protocol

Significantly increase 
the cost of offline 
dictionary attacks

Offline dictionary 
attacks

𝒑𝒘

password_file 
= [ 𝒓, 𝒏, 𝑯𝒏 𝒑𝒘, 𝒓  ]

where 𝐻𝑛 𝑝𝑤, 𝑟 = Iterate_hash_with_salt(𝑝𝑤, 𝑟, 𝑛)

Offline dictionary 
attacks

𝒑𝒘

password_file = [ 𝒓, 𝑯 𝒑𝒘, 𝒓  ]

Running time: 𝑻 Running time: 𝒏 ⋅ 𝑻



• Challenge-response paradigm

The SCRAM protocol

𝒑𝒘 𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)



• Challenge-response paradigm

The SCRAM protocol

𝒑𝒘
I want to prove 
that I have 𝒑𝒘

OK, let me 
‘challenge’ you.

𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)



• Challenge-response paradigm

The SCRAM protocol

𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)𝒑𝒘

ServerChallenge:𝒓, 𝒏, 𝒄𝒉𝟐

Request

1. sample a challenge 𝒄𝒉𝟐 
uniformly at random



• Challenge-response paradigm

The SCRAM protocol

𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)

ServerChallenge:𝒓, 𝒏, 𝒄𝒉𝟐

Request

1. sample a challenge 𝒄𝒉𝟐 
uniformly at random

2. Salted_pw = 𝑯𝒏(𝒓, 𝒑𝒘)

3. Client_key = 𝐇𝐌𝐀𝐂(Salted_pw,  ‘Client key’)
4. Auth_msg = [Client’s Name] || 𝒓, 𝒏, 𝒄𝒉𝟐 
5. Client_sign = 𝐇𝐌𝐀𝐂 𝐇 Client_key ,Auth_msg  // Here 𝐇 is the hash function used in 𝐇𝐌𝐀𝐂
6. Client_proof = Client_key ⊕ Client_sign 

𝒓, 𝒏, 𝒑𝒘



• Challenge-response paradigm

The SCRAM protocol

𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)

ServerChallenge:𝒓, 𝒏, 𝒄𝒉𝟐

Request

1. sample a challenge 𝒄𝒉𝟐 
uniformly at random

6. Verify Client_proof 

2. Salted_pw = 𝑯𝒏(𝒓, 𝒑𝒘)

3. Client_key = 𝐇𝐌𝐀𝐂(Salted_pw,  ‘Client key’)
4. Auth_msg = [Client’s Name] || 𝒓, 𝒏, 𝒄𝒉𝟐 
5. Client_sign = 𝐇𝐌𝐀𝐂 𝐇 Client_key ,Auth_msg  // Here 𝐇 is the hash function used in 𝐇𝐌𝐀𝐂
6. Client_proof = Client_key ⊕ Client_sign 

ClientProof: Client_proof 

𝒓, 𝒏, 𝒑𝒘



• Challenge-response paradigm

The SCRAM protocol

𝒓, 𝒏, 𝒑𝒘
I want to prove 
that I have 𝒑𝒘

OK, let me 
‘challenge’ you.

𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)

You also need to 
prove that you 

have the pw file 
OK, ‘challenge’ me.



• Challenge-response paradigm

The SCRAM protocol

𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)𝒓, 𝒏, 𝒑𝒘

ClientChallenge: 𝒄𝒉𝟏

1. sample a challenge 𝒄𝒉𝟏 
uniformly at random



• Challenge-response paradigm

The SCRAM protocol

𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)𝒓, 𝒏, 𝒑𝒘

ClientChallenge: 𝒄𝒉𝟏

2. Salted_pw = 𝑯𝒏(𝒓, 𝒑𝒘)

3. Server_key = 𝐇𝐌𝐀𝐂(Salted_pw,  ‘Client key’)
4. Auth_msg = [Client’s Name] || 𝒄𝒉𝟏

5. Server_sign= 𝐇𝐌𝐀𝐂 Server_key,Auth_msg

ServerSign: Server_sign

1. sample a challenge 𝒄𝒉𝟏 
uniformly at random



• Challenge-response paradigm

The SCRAM protocol

𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)𝒓, 𝒏, 𝒑𝒘

ClientChallenge: 𝒄𝒉𝟏

2. Salted_pw = 𝑯𝒏(𝒓, 𝒑𝒘)

3. Server_key = 𝐇𝐌𝐀𝐂(Salted_pw,  ‘Client key’)
4. Auth_msg = [Client’s Name] || 𝒄𝒉𝟏

5. Server_sign= 𝐇𝐌𝐀𝐂 Server_key,Auth_msg

ServerSign: Server_sign

1. sample a challenge 𝒄𝒉𝟏 
uniformly at random

6. Verify Server_sign



The SCRAM protocol

Account = [ClientName]
password = 𝒑𝒘
where 𝑝𝑤 is some string

Run TLS handshake to share 
a handshake key K and 

some channel binding info TLS_INFO

Auth_msg = [ClientName] || 𝒄𝒉𝟏||𝒄𝒉𝟐 || 𝒓 || 𝒏 || TLS_INFO

ServerFirst: 𝒄𝒉𝟏||𝒄𝒉𝟐, 𝒓,𝒏

ClientFirst: [ClientName], 𝒄𝒉𝟏

User password_file

Runzhi 𝒓, 𝒏, 𝑯𝒏(𝒓, 𝒑𝒘)

Tom 𝑟2, 𝑛, 𝐻𝑛(𝑟2, 𝑝𝑤2)

... ...
1. Pick a random 
client challenge”𝒄𝒉𝟏 2. Pick a random 

server challenge”𝑐ℎ2

4. Verify Client_proof. 
If valid: 
Compute Server_sign  
using Auth_msg

3. Compute Client_proof  
using Auth_msg

5. Verify Server_sign

ClientFinal: TLS_INFO, 𝒄𝒉𝟏||𝒄𝒉𝟐, Client_proof 

ServerFinal: Server_sign



The SCRAM protocol

• Main idea: 
1. Add iteration in computing salted & hashed password
2. Challenge-response Mechanism
3. Run over TLS

• Advantages: Inherent Resistance to Replay Attacks, Mutual Authentication, Channel Binding...
• Disadvantages:

➢  More messages sending (i.e., higher round-trip times) , higher computation overhead (e.g., the 
client has to compute the iterated hash of password), ...

• Used in some systems that require higher security guarantees...
➢ IMAP / POP / SMTP / ...
➢Database Authentication (e.g., MongoDB)...



• Previous protocols: TLS + salted & hashed (& iterated) passwords
• Advantages: Simple, rely on known constructions

Password-based Authenticated Key Exchange



• Previous protocols: TLS + salted & hashed (& iterated) passwords
• Advantages: Simple, rely on known constructions

• Not entirely satisfactory:
1. Higher RTTs: RTTs of TLS + RTTs of password protocol
2. If the handshake protocol is not secure, then they can be trivially broken (leads to offline 

attacks immediately).

Password-based Authenticated Key Exchange



• Previous protocols: TLS + salted & hashed (& iterated) passwords
• Advantages: Simple, rely on known constructions

• Not entirely satisfactory:
1. Higher RTTs: RTTs of TLS + RTTs of password protocol
2. If the handshake protocol is not secure, then they can be trivially broken (leads to offline 

attacks immediately).

• An alternative solution: Password-based Authenticated Key Exchange (PAKE)

Password-based Authenticated Key Exchange



• (Symmetric) PAKE:

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

SK SK

Exchange some messages (even without TLS)



• (Symmetric) PAKE:

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

SK SK

Primary Goals: 
• (1) Resistance to Offline Dictionary attacks     (2) The shared key SK is pseudorandom

Exchange some messages (even without TLS)



• Encrypted-Key-Exchange DH (EKE-DH) protocols:
• Main idea: Use pw to encrypt the underlying DH key exchange

• Is it secure?

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

𝐸𝑛𝑐 𝐻 𝑝𝑤 , 𝑔𝑥

𝐸𝑛𝑐 𝐻 𝑝𝑤 , 𝑔𝑦

𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … ) 𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … )



• Encrypted-Key-Exchange DH (EKE-DH) protocols:
• Main idea: Use pw to encrypt the underlying DH key exchange

• Is it secure? Depends on the encryption!

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

𝐸𝑛𝑐 𝐻 𝑝𝑤 , 𝑔𝑥

𝐸𝑛𝑐 𝐻 𝑝𝑤 , 𝑔𝑦

𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … ) 𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … )



• EKE-DH protocols based on AEAD:

• Is it secure? (Hint: On invalid input key/ciphertext, AEAD may output “reject”)

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

𝐀𝐄𝐀𝐃 𝐻 𝑝𝑤 , 𝑔𝑥

𝐀𝐄𝐀𝐃 𝐻 𝑝𝑤 , 𝑔𝑦

𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … ) 𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … )



• EKE-DH protocols based on AEAD:

• Is it secure? (Hint: On invalid input key/ciphertext, AEAD may output “reject”)

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

𝐀𝐄𝐀𝐃 𝐻 𝑝𝑤 , 𝑔𝑥

𝐀𝐄𝐀𝐃 𝐻 𝑝𝑤 , 𝑔𝑦

𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … ) 𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … )Try all pw (from the dictionary) until 
AEAD does not output “reject”



• EKE-DH protocols based on an “ideal” encryption:

• The ideal encryption has the following properties: 
• Outputs of encryption and decryption are (pseudo)random even if the key has low entropy 
• Namely, if the adversary does not have the correct pw, the outputs of encryption/decryption are some 

random group elements.

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

𝐈𝐝𝐞𝐚𝐥_𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐻 𝑝𝑤 , 𝑔𝑥

𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … ) 𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … )

𝐈𝐝𝐞𝐚𝐥_𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐻 𝑝𝑤 , 𝑔𝑦



• EKE-DH protocols based on an “ideal” encryption:

• The ideal encryption has the following properties: 
• Outputs of encryption and decryption are (pseudo)random even if the key has low entropy 
• Namely, if the adversary does not have the correct pw, the outputs of encryption/decryption are some 

random group elements.

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

𝐈𝐝𝐞𝐚𝐥_𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐻 𝑝𝑤 , 𝑔𝑥

𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … ) 𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … )

𝐈𝐝𝐞𝐚𝐥_𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐻 𝑝𝑤 , 𝑔𝑦

Ideal_Encryption 
never (or with a negligible probability) 

outputs “reject”!



• EKE-DH protocols based on an “ideal” encryption:

• The ideal encryption has the following properties: 
• Outputs of encryption and decryption are (pseudo)random even if the key has low entropy 
• Namely, if the adversary does not have the correct pw, the outputs of encryption/decryption are some 

random group elements.

Password-based Authenticated Key Exchange

𝒑𝒘𝒑𝒘

𝐈𝐝𝐞𝐚𝐥_𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐻 𝑝𝑤 , 𝑔𝑥

𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … ) 𝑆𝐾 = 𝐾𝐷𝐹(𝐻 𝑔𝑥𝑦 , … )

𝐈𝐝𝐞𝐚𝐥_𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐻 𝑝𝑤 , 𝑔𝑦

How to design it (with high efficiency & 
strong security): Open problem

Ideal_Encryption 
never (or with an overwhelming probability) 

outputs “reject”!



Password-based Authenticated Key Exchange

• Asymmetric PAKE (aPAKE):

𝒓, 𝑯(𝒓, 𝒑𝒘)𝒑𝒘

SK SK

(Exchange some messages)



Password-based Authenticated Key Exchange

• Secure Remote Password (SRP) Protocol 

• Based on module integer groups / Not directly compatible with Elliptic Curves
• Apple ID Authentication / Blizzard Entertainment

𝒓, 𝑯(𝒓, 𝒑𝒘)𝒑𝒘

SKSK

Phase 1: Key Exchange based on DH

Phase 2: Key Confirmation



Password-based Authenticated Key Exchange

• Secure Remote Password (SRP) Protocol (version 6a)

Password file:
𝒓, 𝒗 = 𝒈𝑯 𝒓, 𝒖𝒔𝒆𝒓_𝒏𝒂𝒎𝒆 , 𝒑𝒘

𝒑𝒘

Public Parameters:
𝒒                                         a large prime
𝑵 = 𝟐𝒒 + 𝟏                   a prime (we call it as safe prime)
𝔾                                     a sub-group of ℤ𝑵 with order 𝒒
𝑔                                          the generator of 𝔾

Notations:
Let ℎ be an integer in ℤ𝑵. 
If ℎ ∈ 𝔾 and 𝑥 ∈ ℤ𝑞, then we denote ℎ𝑥 ≔ ℎ𝑥 𝑚𝑜𝑑 𝑁 



Password-based Authenticated Key Exchange

• SRP-v6a: (1) Key Exchange phase (2) Key Confirmation phase

𝒓, 𝒗𝒑𝒘
“user_name”, login_request



Password-based Authenticated Key Exchange
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Password-based Authenticated Key Exchange

• SRP-v6a: (1) Key Exchange phase (2) Key Confirmation phase

𝒓, 𝒗𝒑𝒘
“user_name”, login_request

𝑟, 𝐵

𝑘 = 𝐻5 𝑝, 𝑔
𝑏 ←$ ℤ𝑝−1
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𝑟𝑤 = 𝐻 𝑟, [user_name], 𝑝𝑤
𝑣 = 𝑔𝑟𝑤

𝑎 ←$ ℤ𝑝−1, 𝐴 = 𝑔𝑎

𝑘 = 𝐻5 𝑝, 𝑔 , 𝑢 = 𝐻6 𝐴, 𝐵
𝑆𝑆 = 𝐵 − 𝑘 ⋅ 𝑣 𝑎+𝑢⋅𝑟𝑤

𝐴
𝑢 = 𝐻6 𝐴, 𝐵

𝑆𝑆 = 𝐴 ⋅ 𝑣𝑢 𝑏
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Phase 1: 
Key Exchange 
based on DH

𝑟, 𝐵

𝐴

Phase 1: 
Key Exchange 
based on DH

Shared_secret: 𝑆𝑆
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KC’_client 
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• SRP-v6a: (1) Key Exchange phase (2) Key Confirmation phase

“user_name”, login_request

Password-based Authenticated Key Exchange

𝒓, 𝒗𝒑𝒘

Shared_secret: 𝑆𝑆
KC_client = 𝐻2 𝐴, 𝐵, 𝑆𝑆

KC’_server = 𝐻3 𝐴, 𝐵, 𝑆𝑆
𝑆𝐾 = 𝐻4(𝐴, 𝐵, 𝑆𝑆)

Phase 1: 
Key Exchange 
based on DH

𝑟, 𝐵

𝐴

Phase 1: 
Key Exchange 
based on DH

Shared_secret: 𝑆𝑆
KC’_client = 𝐻2 𝐴, 𝐵, 𝑆𝑆
KC_server = 𝐻3 𝐴, 𝐵, 𝑆𝑆

𝑆𝐾 = 𝐻4(𝐴, 𝐵, 𝑆𝑆)

KC’_client 

KC’_server 

Accept 𝑆𝐾 iff KC’_client == KC_client   Accept 𝑆𝐾 iff KC’_server == KC_server  



• SRP-v6a:

“user_name”, login_request

Password-based Authenticated Key Exchange

𝒓, 𝒗𝒑𝒘

𝑟, 𝐵 = 𝐻5 𝑝, 𝑔 ⋅ 𝑣 + 𝑔𝑏

𝐴 = 𝑔𝑎

KC’_client = 𝐻2 𝐴, 𝐵, 𝑆𝑆

KC’_server = 𝐻3 𝐴, 𝐵, 𝑆𝑆   



Homework

• Implement the SCRAM protocol (You do not need to use sockets, but your program should 
draw the message flows)

• Bonus: Try arguing that, even though SRP-v6a is run without using TLS encrypted channel, the 
adversary still cannot “easily” launch offline dictionary attacks on it. Just write a simple pdf to 
argue it. (Hint: Using specific example is better than providing abstract explanations)

(You can ask AI, but then you should learn its answer and write a human-friendly answer by yourself, 
since it is not hard to detect that a solution is written from AI)



Homework

• Bonus (example code will be provided later): Try implementing the following “pre-
computation attacks” on SRP-v6a.

1. Suppose that a client and a server SRP-v6a have run SRP-v6a once without using TLS (provided in 
the example code), and you saw the salt 𝑟 and the username.

2. Given a dictionary D (in the example code), create a new dictionary that consists of pairs 

(𝑝𝑤, 𝑣 = 𝑔𝐻 𝑟, 𝑢𝑠𝑒𝑟_𝑛𝑎𝑚𝑒 , 𝑝𝑤′
) for all 𝑝𝑤′ ∈ 𝐷

3.   Suppose that now the server’s pw database is compromised and you get the correct 

𝑔𝐻 𝑟, 𝑢𝑠𝑒𝑟_𝑛𝑎𝑚𝑒 , 𝑝𝑤∗

4.   Using your new dictionary, recover the correct password 𝑝𝑤∗ of the client “immediately”.



Further Reading

• RFC document of SRCAM: https://datatracker.ietf.org/doc/html/rfc5802 

• Password-Based Key Derivation Function: 

https://datatracker.ietf.org/doc/html/rfc8018#page-11 

• Analysis on SRP: Provable Security Analysis of the Secure Remote Password Protocol, 
https://eprint.iacr.org/2023/1457 

• Matthew Green’s blog: Should you use SRP? 
https://blog.cryptographyengineering.com/should-you-use-srp/ 

https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc8018#page-11
https://eprint.iacr.org/2023/1457
https://blog.cryptographyengineering.com/should-you-use-srp/

	Slide 1: Cryptography Engineering 
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

