
Cryptography Engineering
• Lecture 9 (Jan 16, 2024)
• Today’s notes:

• Recall previous contents
• The OPAQUE protocol
• Summary on password-based authentication
• Notes on the final project

• Coding tasks/Homework:
• Implement the OPAQUE protocol
• Bonus: Implement OPAQUE using sockets

• Welcome back from the Christmas holidays!

• L1: Recall some cryptographic primitives
• L2: Signature and Certificate
• L3: DHKE + Signature & Certificate = TLS handshake
• L4: Secure Messaging, E2EE, X3DH
• L5 & L6: Key chain, Double ratchet = Symmetric ratchet + DH ratchet
• L7: Passwords, Off/Online attacks, TLS + passwords, Salting
• L8: SCRAM (hashed+salted+iterated), Password-based AKE (EKE, SRP)

Previous lecture contents

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The SCRAM protocol
• The EKE protocol
• The SRP protocol

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The SCRAM protocol
• The EKE protocol
• The SRP protocol

• Goal: Authentication via passwords; Resistance to offline attacks.

Previous Password-based Protocols

• TLS + hashed & salted passwords
• Store 𝒓, 𝑯 𝒑𝒘, 𝒓 in the server, where 𝒓 is the salt.
• Transport 𝒓 to the client, then the client prove its identity by responding 𝑯 𝒑𝒘, 𝒓

• Encrypted by TLS

• The SCRAM protocol
• The SRP protocol

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The TLS + SCRAM protocol

• Store 𝒓, 𝒏, 𝑯𝒏 𝒑𝒘, 𝒓 in the server, where 𝒓 is the salt and 𝒏 is the number of iterations.
• Transport 𝒓 and 𝒏 to the client, then the client prove its identity by responding 𝑯𝒏 𝒑𝒘, 𝒓

• Encrypted by TLS

• The SRP protocol

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The TLS + SCRAM protocol
• The SRP protocol

• Store 𝒓, 𝑯 𝒑𝒘, 𝒓 in the server, where 𝒓 is the salt.
• Password-based AKE:

• Security guarantee even if the certificate is fake or the TLS connection is insecure.
• Enhanced security via integrating with TLS

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The TLS + SCRAM protocol
• The SRP protocol

• Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The TLS + SCRAM protocol
• The SRP protocol

• Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage
2. Increase the time required to recover the password after leakage.

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The TLS + SCRAM protocol
• The SRP protocol

• Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage
2. Increase the time required to recover the password after leakage.

Required Time after leakageStorage

𝐎(𝟏)Plain pw

𝐎(𝑫)H(pw)

𝐎(𝑫)r, H(pw, r)

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The TLS + SCRAM protocol
• The SRP protocol

• Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage
2. Increase the time required to recover the password after leakage.

Required Time after leakageStorage

𝐎(𝟏)Plain pw

𝐎(𝑫)H(pw)

𝐎(𝑫)r, H(pw, r)

This is also important in practice,
e.g., notifying users to change their

passwords after the leakage.

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The TLS + SCRAM protocol
• The SRP protocol

• Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage
2. Increase the time required to recover the password after leakage.

• All protocols reveal salt (and the number of iterations) during the execution…

Required Time after leakageStorage

𝐎(𝟏)Plain pw

𝐎(𝑫)H(pw)

𝐎(𝑫)r, H(pw, r)

Previous Password-based Protocols

• TLS + hashed & salted passwords
• The TLS + SCRAM protocol
• The SRP protocol

• Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage
2. Increase the time required to recover the password after leakage.

• All protocols reveal salt (and the number of iterations) during the execution…
• May lead to Precomputation Attacks
• 𝐎 𝑫 → 𝐎 log 𝑫 or even 𝐎 1

Required Time after leakageStorage

𝐎(𝟏)Plain pw

𝐎(𝑫)H(pw)

𝐎(𝑫)r, H(pw, r)

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)Username: Bob
Password: 𝑝𝑤

𝒓

LoginReq: Bob

…

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)Username: Bob
Password: 𝑝𝑤

Suppose that the adversary
knows the username…

Username: Bob

𝒓

…

LoginReq: Bob

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)Username: Bob
Password: 𝑝𝑤 Username: Bob

𝒓

…

LoginReq: Bob

𝒓

LoginReq: Bob

Suppose that the adversary
knows the username…

Then it can get the salt...

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)
Username: Bob

𝒓

LoginReq: Bob

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)
Username: Bob

𝒓

LoginReq: Bob The H(pw, r) values 𝑝𝑤 ∈ Dict

𝐇(𝑝𝑤ଵ, 𝑟)𝑝𝑤ଵ

𝐇(𝑝𝑤ଶ, 𝑟)𝑝𝑤ଶ

𝐇(𝑝𝑤ଷ, 𝑟)𝑝𝑤ଷ

𝐇(𝑝𝑤ସ, 𝑟)𝑝𝑤ସ

......

𝒓, Dict

The table can be computed locally...

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)
Username: Bob

𝒓

LoginReq: Bob The H(pw, r) values 𝑝𝑤 ∈ Dict

𝐇(𝑝𝑤ଵ, 𝑟)𝑝𝑤ଵ

𝐇(𝑝𝑤ଶ, 𝑟)𝑝𝑤ଶ

𝐇(𝑝𝑤ଷ, 𝑟)𝑝𝑤ଷ

𝐇(𝑝𝑤ସ, 𝑟)𝑝𝑤ସ

......

𝒓, Dict

The table can be computed locally...

𝑯(𝒓, 𝒑𝒘)

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)
Username: Bob

The H(pw, r) values 𝑝𝑤 ∈ Dict

𝐇(𝑝𝑤ଵ, 𝑟)𝑝𝑤ଵ

𝐇(𝑝𝑤ଶ, 𝑟)𝑝𝑤ଶ

𝐇(𝑝𝑤ଷ, 𝑟)𝑝𝑤ଷ

𝐇(𝑝𝑤ସ, 𝑟)𝑝𝑤ସ

......

The table can be computed locally...

𝑯(𝒓, 𝒑𝒘) Search 𝑯(𝒓, 𝒑𝒘)

𝒑𝒘

𝒓

LoginReq: Bob
𝒓, Dict

Can be finished
in O(log |D|) time...

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)
Username: Bob

The H(pw, r) values 𝑝𝑤 ∈ Dict

𝐇(𝑝𝑤ଵ, 𝑟)𝑝𝑤ଵ

𝐇(𝑝𝑤ଶ, 𝑟)𝑝𝑤ଶ

𝐇(𝑝𝑤ଷ, 𝑟)𝑝𝑤ଷ

𝐇(𝑝𝑤ସ, 𝑟)𝑝𝑤ସ

......

The table can be computed locally...

𝑯(𝒓, 𝒑𝒘) Search 𝑯(𝒓, 𝒑𝒘)

𝒑𝒘

𝒓

LoginReq: Bob
𝒓, Dict

Can be finished
in O(log |D|) time...

Why O(log |D|)?
Sort all H(pw, r) values before leakage, and
then binary search...

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)
Username: Bob

The H(pw, r) values 𝑝𝑤 ∈ Dict

𝐇(𝑝𝑤ଵ, 𝑟)𝑝𝑤ଵ

𝐇(𝑝𝑤ଶ, 𝑟)𝑝𝑤ଶ

𝐇(𝑝𝑤ଷ, 𝑟)𝑝𝑤ଷ

𝐇(𝑝𝑤ସ, 𝑟)𝑝𝑤ସ

......

The table can be computed locally...

𝑯(𝒓, 𝒑𝒘) Search 𝑯(𝒓, 𝒑𝒘)

𝒑𝒘

𝒓

LoginReq: Bob
𝒓, Dict

Can be finished
in O(log |D|) time...

A question about algorithms:
How can we achieve the O(1) running

time? (Suppose that D ≤ 2ଷଶ)

• Suppose that the password is stored by hashing and salting.
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)
Username: Bob

The H(pw, r) values 𝑝𝑤 ∈ Dict

𝐇(𝑝𝑤ଵ, 𝑟)𝑝𝑤ଵ

𝐇(𝑝𝑤ଶ, 𝑟)𝑝𝑤ଶ

𝐇(𝑝𝑤ଷ, 𝑟)𝑝𝑤ଷ

𝐇(𝑝𝑤ସ, 𝑟)𝑝𝑤ସ

......

The table can be computed locally...

𝑯(𝒓, 𝒑𝒘) Search 𝑯(𝒓, 𝒑𝒘)

𝒑𝒘

𝒓

LoginReq: Bob
𝒓, Dict

Can be finished
in O(log |D|) time...

...with
precomputation...

Required Time
after leakageStorage

𝐎(1)𝐎(𝟏)Plain pw

𝐎(log 𝑫)𝐎(𝑫)H(pw)

𝐎(log 𝑫)𝐎(𝑫)r, H(pw, r)

Precomputation Attacks on Passwords

Required Time
after leakage

Required Time
before leakage

Attack Method to
recover pw

𝐎(𝑫)-Brute-force on
Dictionary

≤ 𝐎(log 𝑫)≤ 𝐎(𝑫 ⋅ log 𝑫)Precomputation

• Comparison:

Precomputation Attacks on Passwords

Required Time
after leakage

Required Time
before leakage

Attack Method to
recover pw

𝐎(𝑫)-Brute-force on
Dictionary

≤ 𝐎(log 𝑫)≤ 𝐎(𝑫 ⋅ log 𝑫)Precomputation

• Comparison:

• Reveal salt during the protocol => Precomputation attacks
• How can we protect the salt?

• Comparison:

• Reveal salt during the protocol => Precomputation attacks
• How can we protect the salt?

• No straight-forward solutions that without using algebraic structures
• Solution using algebraic structures: Oblivious Pseudorandom Function (OPRF)

• PAKE without revealing salt: OPAQUE

Precomputation Attacks on Passwords

Required Time
after leakage

Required Time
before leakage

Attack Method to
recover pw

𝐎(𝑫)-Brute-force on
Dictionary

≤ 𝐎(log 𝑫)≤ 𝐎(𝑫 ⋅ log 𝑫)Precomputation

• Classical PRF:
• Pseudorandomness: If the PRF key is random, then the output of PRF is pseudorandom

DH-based OPRF

• Classical PRF:
• Pseudorandomness: If the PRF key is random, then the output of PRF is pseudorandom

• Oblivious PRF:
• Pseudorandomness
• PRF in the two-party (client-server) computation setting

DH-based OPRF

Exchange some
protocol messages

kInput

OPRF(k, input)

• Classical PRF:
• Pseudorandomness: If the PRF key is random, then the output of PRF is pseudorandom

• Oblivious PRF:
• Pseudorandomness
• PRF in the two-party (client-server) computation setting
• Key privacy: The client learns OPRF(k, input), but it learns nothing about the key k
• Input privacy: The server knows the client has evaluated the ORRF, but it does not know the input

DH-based OPRF

Exchange some
protocol messages

kInputk?

OPRF(k, input)

Input?

DH-based OPRF

𝒌Input: 𝒙

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝑯(𝒙, 𝒉 𝒙 𝒌)

DH-based OPRF

𝒌Input: 𝒙

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝑯(𝒙, 𝒉 𝒙 𝒌)

𝛼 ←$ ℤ௤
ℎ 𝒙 ఈ

DH-based OPRF

𝒌Input: 𝒙

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝑯(𝒙, 𝒉 𝒙 𝒌)

𝛼 ←$ ℤ௤
ℎ 𝒙 ఈ

ℎ 𝒙 ఈ⋅𝒌 (= ℎ 𝑥 ఈ ௞)

Compute 𝛼ିଵ ∈ ℤ௤

ℎ 𝒙 𝒌 = ℎ 𝒙 ఈ⋅𝒌 ఈషభ

Compute 𝐻(𝑥, ℎ 𝑥 ௞)

DH-based OPRF

𝒌Input: 𝒙

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝑯(𝒙, 𝒉 𝒙 𝒌)

𝛼 ←$ ℤ௤
ℎ 𝒙 ఈ

ℎ 𝒙 ఈ⋅𝒌 (= ℎ 𝑥 ఈ ௞)
Key Privacy: ℎ 𝑥 ௞

=> 𝑘, solve dlog...
Input Privacy:

ℎ 𝒙 ఈ is “random”...

Compute 𝛼ିଵ ∈ ℤ௤

ℎ 𝒙 𝒌 = ℎ 𝒙 ఈ⋅𝒌 ఈషభ

Compute 𝐻(𝑥, ℎ 𝑥 ௞)

DH-based OPRF

𝒌Input: 𝒙

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝛼 ←$ ℤ௤
ℎ 𝒙 ఈ

ℎ 𝒙 ఈ⋅𝒌 (= ℎ 𝑥 ఈ ௞)

Compute 𝛼ିଵ ∈ ℤ௤

ℎ 𝒙 𝒌 = ℎ 𝒙 ఈ⋅𝒌 ఈషభ

Compute 𝐻(𝑥, ℎ 𝑥 ௞)

The OPRF here is
OPRF(key: k, input: x) = 𝐻(𝑥, ℎ 𝑥 ௞)

DH-based OPRF

Key: 𝒔 (as the salt)Input: 𝒑𝒘

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝛼 ←$ ℤ௤
ℎ 𝒑𝒘 ఈ

ℎ 𝒑𝒘 ఈ⋅𝒔 (= ℎ 𝑥 ఈ ௞)

Compute 𝛼ିଵ ∈ ℤ௤

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

Compute 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)

DH-based OPRF

Key: 𝒔 (as the salt)Input: 𝒑𝒘

𝛼 ←$ ℤ௤
ℎ 𝒑𝒘 ఈ

ℎ 𝒑𝒘 ఈ⋅𝒔

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)

• Only the client knows the password • Only the server knows the salt

DH-based OPRF

Key: 𝒔 (as the salt)Input: 𝒑𝒘

𝛼 ←$ ℤ௤
ℎ 𝒑𝒘 ఈ

ℎ 𝒑𝒘 ఈ⋅𝒔

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)

• Only the client knows the password • Only the server knows the salt

• The 𝒓𝒘 value is pseudorandom by the pseudorandomness of
OPRF, but it can not be directly used as the session key!

• 𝑟𝑤 is always the same, but we expect that a new execution of
the protocol produces a new session key…

• Solution: Use AKE protocol to share a session key, and use rw to
protect the AKE messages…

DH-based OPRF

Key: 𝒔 (as the salt)Input: 𝒑𝒘

𝛼 ←$ ℤ௤
ℎ 𝒑𝒘 ఈ

ℎ 𝒑𝒘 ఈ⋅𝒔

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)

• Only the client knows the password • Only the server knows the salt

• The 𝒓𝒘 value is pseudorandom by the pseudorandomness of
OPRF, but it can not be directly used as the session key!

• 𝑟𝑤 is always the same, but we expect that a new execution of
the protocol produces a new session key…

• Solution: Use AKE protocol to share a session key, and use rw
to protect the AKE messages…

• Brief introduction of AKE (Authenticated Key Exchange)
• Two parties share an authenticated key using their long-term key pairs

DH-based OPRF + AKE

• Brief introduction of AKE (Authenticated Key Exchange)
• Two parties share an authenticated key using their long-term key pairs
• For example:

• Security Requirement: Pseudorandom session key, authentication, ...

DH-based OPRF + AKE

𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖ , 𝑙𝑝𝑘௦ 𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦ , 𝑙𝑝𝑘௖

𝑒𝑝𝑘௖

𝑒𝑝𝑘௦

𝑆𝐾 = KeyClient(𝑙𝑠𝑘௖, 𝑒𝑠𝑘௖, 𝑙𝑝𝑘௦, 𝑒𝑝𝑘௦,…) 𝑆𝐾 = KeyServer(𝑙𝑠𝑘௦, 𝑒𝑠𝑘௦, 𝑙𝑝𝑘௖, 𝑒𝑝𝑘௖)

Generate (𝑒𝑝𝑘௖, 𝑒𝑠𝑘௖)

Generate (𝑒𝑝𝑘௦, 𝑒𝑠𝑘௦)

DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

Suppose that the
server has the rw value

DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

Generate AKE key pairs

(𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖) ← AKE.KeyGen
(𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦) ← AKE.KeyGen

DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

(𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖) ← AKE.KeyGen
(𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦) ← AKE.KeyGen

key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

Encrypt generated keys
using rw

DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖ , (𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)
key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖ , (𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)
key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

𝛼 ←$ ℤ௤ ℎ 𝒑𝒘 ఈ

ℎ 𝒑𝒘 ఈ⋅𝒔, enc_keys
ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝑟𝑤)

key_info= AEAD.Dec(rw_key, enc_keys)
Client gets (𝒍𝒑𝒌𝒄, 𝒍𝒔𝒌𝒄, 𝒍𝒑𝒌𝒔)

DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖ , (𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)
key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

𝛼 ←$ ℤ௤ ℎ 𝒑𝒘 ఈ

ℎ 𝒑𝒘 ఈ⋅𝒔, enc_keys
ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)

key_info= AEAD.Dec(rw_key, enc_keys) // Client gets (𝒍𝒑𝒌𝒄, 𝒍𝒔𝒌𝒄, 𝒍𝒑𝒌𝒔)

DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖ , (𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)
key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

𝛼 ←$ ℤ௤ ℎ 𝒑𝒘 ఈ

ℎ 𝒑𝒘 ఈ⋅𝒔, enc_keys
ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)

key_info= AEAD.Dec(rw_key, enc_keys) // Client gets (𝒍𝒑𝒌𝒄, 𝒍𝒔𝒌𝒄, 𝒍𝒑𝒌𝒔)
Now the client can run the
AKE protocol with Server

OPQAUE – Overview of Registration

Username
password: 𝒑𝒘

𝒔 ←$ ℤ௤

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)

(𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖) ← AKE.KeyGen, (𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦) ← AKE.KeyGen
client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

enc_client_keys = AEAD(rw_key, client_key_info)

(“Register”, Username, 𝒑𝒘)

Encrypted by TLS

OPQAUE – Overview of Registration

Username
password: 𝒑𝒘 (“Register”, Username, 𝒑𝒘)

Encrypted by TLS 𝒔 ←$ ℤ௤

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)

(𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖) ← AKE.KeyGen, (𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦) ← AKE.KeyGen
client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

enc_client_keys = AEAD(rw_key, client_key_info)

Then the server store {
user: Username // … as index
salt: 𝒔
server_k_bundle: 𝒍𝒑𝒌𝒄, 𝒍𝒑𝒌𝒔, 𝒍𝒔𝒌𝒔

client_enc_k_bundle: enc_client_keys
… // Auxiliary information
} in the password database

OPQAUE – Stage 1: OPRF

Username, password: 𝒑𝒘

𝛼 ←$ ℤ௤
LoginRequest = (Username, ℎ 𝒑𝒘 ఈ)

OPQAUE – Stage 1: OPRF

Username, password: 𝒑𝒘

LoginRequest = (Username, ℎ 𝒑𝒘 ఈ)𝛼 ←$ ℤ௤

Retrieve (𝒔, server_k_bundle, client_enc_k_bundle)
// …corresponds to the username

OPQAUE – Stage 1: OPRF

Username, password: 𝒑𝒘

LoginRequest = (Username, ℎ 𝒑𝒘 ఈ)𝛼 ←$ ℤ௤

ℎ 𝒑𝒘 ఈ⋅𝒔, client_enc_k_bundle

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)
client_key_info= AEAD.Dec(rw_key, client_enc_k_bundle)
Parse client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

Retrieve (𝒔, server_k_bundle, client_enc_k_bundle)
// …corresponds to the username

Parse server_k_bundle = (𝑙𝑝𝑘௖, 𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)

OPQAUE – Stage 1: OPRF

Username, password: 𝒑𝒘

LoginRequest = (Username, ℎ 𝒑𝒘 ఈ)𝛼 ←$ ℤ௤

ℎ 𝒑𝒘 ఈ⋅𝒔, client_enc_k_bundle

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 ఈ⋅𝒔 ఈషభ

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)
client_key_info= AEAD.Dec(rw_key, client_enc_k_bundle)
Parse client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦)

Retrieve (𝒔, server_k_bundle, client_enc_k_bundle)
// …corresponds to the username

Parse server_k_bundle = (𝑙𝑝𝑘௖, 𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)

OPQAUE – Stage 2: AKE

Username, password: 𝒑𝒘

OPRF stage

Parse client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦) Parse server_k_bundle = (𝑙𝑝𝑘௖, 𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)

OPQAUE – Stage 2: AKE

Username, password: 𝒑𝒘

OPRF stage

AKE stage

Parse client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦) Parse server_k_bundle = (𝑙𝑝𝑘௖, 𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)

OPQAUE – Stage 2: AKE

Username, password: 𝒑𝒘

Parse client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦) Parse server_k_bundle = (𝑙𝑝𝑘௖, 𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)

OPRF stage

𝑒𝑝𝑘௖

𝑒𝑝𝑘௦

Generate (𝑒𝑝𝑘௖, 𝑒𝑠𝑘௖)

Generate (𝑒𝑝𝑘௦, 𝑒𝑠𝑘௦)
𝑆𝐾 = KeyServer(…)

𝑆𝐾 = KeyClient(…)

OPQAUE – Stage 3: Key Confirmation

Username, password: 𝒑𝒘

OPRF stage

AKE stage (Homework)

Parse client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦) Parse server_k_bundle = (𝑙𝑝𝑘௖, 𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)

𝑆𝐾 = KeyServer(…)𝑆𝐾 = KeyClient(…)

OPQAUE – Stage 3: Key Confirmation

Username, password: 𝒑𝒘

OPRF stage

AKE stage (Homework)

Parse client_key_info = (𝑙𝑝𝑘௖, 𝑙𝑠𝑘௖, 𝑙𝑝𝑘௦) Parse server_k_bundle = (𝑙𝑝𝑘௖, 𝑙𝑝𝑘௦, 𝑙𝑠𝑘௦)

𝑆𝐾 = KeyServer(…)𝑆𝐾 = KeyClient(…)

Key Confirmation (Homework)

OPQAUE – Summary

Username, password: 𝒑𝒘

OPRF stage:
Allow the client to compute rw (to recover the

AKE keys) without revealing the salt

AKE stage:
Use AKE protocol to share a fresh session key

Key Confirmation:
Confirm both parties share the same key

Registration:
Instead of storing (salt, H(salt pw)), we store

(salt, AEAD(rw, [AKE keys], …)), where rw = DH-OPRF(salt, pw)
// This allows the future messages exchange to not reveal

the salt (to prevent precomputation)

Summary on Password-based Authentication

• Use passwords to authenticate identities

• Storage of passwords & Protocols:
– Plaintext (or hashed without salt) password:
– Hashed + salted password: (SRP, …)
– Hashed + salted + iterated password: (SCRAM, …)
– OPRF passwords: (OPAQUE)

• In Practice: Run over TLS

• Password-based AKE protocols: (secure guarantee even in an insecure TLS connection…)
– SRP
– OPAQUE (stronger)

• Implement the DH-OPRF protocol, and use it to implement the OPAQUE registration phase (using the example code).

Homework

• Implement the HMQV AKE protocol

𝑙𝑝𝑘௖ = 𝐴 = 𝑔௔ ∈ 𝔾
𝑙𝑝𝑘௦ = 𝐵 ∈ 𝔾
𝑙𝑠𝑘௖ = 𝑎 ∈ ℤ௤

𝑙𝑝𝑘௖ = 𝐴 ∈ 𝔾
𝑙𝑝𝑘௦ = 𝐵 = 𝑔௕ ∈ 𝔾

𝑙𝑠𝑘௦ = 𝑏 ∈ ℤ௤

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

HMQV-KG:
1. 𝑙𝑠𝑘 ←$ ℤ௤

2. 𝑙𝑝𝑘 = 𝑔௟௦௞

3. Return (𝑙𝑝𝑘, 𝑙𝑠𝑘)

𝑒𝑝𝑘௖ = 𝑥

𝑒𝑝𝑘௦ = 𝑦

𝑥 ←$ ℤ௤

𝑆𝐾 = HMQV-KServer (𝑏, 𝑦, 𝐴, 𝑋)

𝑆𝐾 = HMQV-KClient(𝑎, 𝑥, 𝐵, 𝑌)

𝑦 ←$ ℤ௤

(The HMQV-Kclient/KServer algorithms are given on the next page…)

Homework

HMQV-KClient(𝑎, 𝑥, 𝐵, 𝑌)
1. 𝑑 = SHA256(𝑋, [Client’s Name])
2. 𝑒 = SHA256(𝑌, [Server’s Name])
3. 𝑠𝑠 = 𝑌𝐵௘ ௫ାௗ௔ \୫୭ୢ ௤

4. 𝑆𝐾 =HKDF(𝑠𝑠)

HMQV-KServer(𝑏, 𝑦, 𝐴, 𝑋)
1. 𝑑 = SHA256(𝑋, [Client’s Name])
2. 𝑒 = SHA256(𝑌, [Server’s Name])

3. 𝑠𝑠 = 𝑋𝐴ௗ ௬ା௘௕ \୫୭ୢ ௤

4. 𝑆𝐾 =HKDF(𝑠𝑠)

• Implement the OPAQUE protocol instantiating with the HMQV protocol, where the Key Confirmation works as follows:

Homework

OPRF stage

AKE stage: HMQV𝑆𝐾 𝑆𝐾

(𝐾௖, 𝐾௦) = HKDF(𝑆𝐾, (“Key Confirmation”)
𝑚𝑎𝑐௖ = HMAC(𝐾௖, “Client KC”)
𝑚𝑎𝑐′௦ = HMAC(𝐾௦, “Server KC”)

Check 𝑚𝑎𝑐′௦ =? 𝑚𝑎𝑐௦

If valid, then accept 𝑆𝐾

(𝐾௖, 𝐾௦) = HKDF(𝑆𝐾, (“Key Confirmation”)
𝑚𝑎𝑐′௖ = HMAC(𝐾௖, “Client KC”)
𝑚𝑎𝑐௦ = HMAC(𝐾௦, “Server KC”)

Check 𝑚𝑎𝑐′௖ =? 𝑚𝑎𝑐௖

If valid, then accept 𝑆𝐾

𝑚𝑎𝑐௖

𝑚𝑎𝑐௦

Registration

• (Bonus) Implement the OPAQUE protocol (in the non-bonus homework) using sockets.
• (Bonus) What is the RTT of the OPAQUE protocol in the non-bonus homework? Can you improve it? If so, implement your

improved version (can be without sockets)
• One RTT = One “ ” in the protocol…

Homework

• OPAQUE paper: https://eprint.iacr.org/2018/163
• OPAQUE IETF draft: https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
• HMQV paper: https://eprint.iacr.org/2005/176

Further Reading

• 1 non-bonus homework question = 1 point
• 1 bonus homework question = 2 points
• How to calculate the final grade of homework (≤ 40):

40 ×
points you obtain

the number of questionsൗ

// You need to get at least 40 × 60% = 24 points to qualify for the final exam.
• You can submit bonus homework before the final deadline: Feb 7th, 2025

• Please ensure that your code runs correctly, as you will not have an opportunity to resubmit it.

• If your code for Homework Set 1 or 2 does not run correctly...
• You can resubmit it by the extended deadline: January 21st, 2025.

• Some suggestions:
• Include the sample input and its expected output in the README file to help me verify your submission.

Notes on Homework

