
Cryptography Engineering
• Lecture 10 (Jan 14, 2026)

• Today’s notes:
• Password and password security
• Salting, and use TLS to protect passwords

• Password:

• Widely used in practice

Password and its Security

“admin”

“root”

“[Your_Name][Your_Birthday]”“123456”

“b8sdhazyn216fsgk.]02=2v4h”

• Why password security is important:

Password and its Security

(source: Google search)

• Properties of passwords:
• Mainly used for authentication (e.g., hash and compare), easy to replace,...
• Human-generated and memorizable
• Short length, Low Entropy
• Highly Reused
• ...

Password and its Security

• Low Entropy
• Lack of randomness, predictability, Short length, Limited character set,...
• Example: (Most people use their personal email as website accounts, e.g., Amazon, ...)

Password and its Security

Account: “[YourName]@gmail.com”

“[Your/Your Partner’s Name]_[Birthday]”, ...

“qwerty” (English keyboard), “qwertz” (German keyboard), ...

“admin”, “123456”, “hello123”, ...

“[Your Phone number]”, “[Family’s phone number]”...

• Low Entropy
• Lack of randomness, predictability, Short length, Limited character set,...
• Example: (Most people use their personal email as website accounts, e.g., Amazon, ...)

• Short, patterned, no randomness, and highly related to personal information

Password and its Security

Account: “[YourName]@gmail.com”

“[Your/Your Partner’s Name]_[Birthday]”, ...

“qwerty” (English keyboard), “qwertz” (German keyboard), ...

“admin”, “123456”, “hello123”, ...

“[Your Phone number]”, “[Family’s phone number]”...

• Highly reused: Different portals, but the same password...

Password and its Security

Steam

PayPal

Online banking

Facebook/LinkedIn

⋮

Leakage

Account: Your Gmail
Password: ********

Scam site

Password Dictionary

• Dictionary Attack:
• Attack (Guess) using password dictionaries
• Focus on known/common password combinations, more efficient than brute force...

.

• Construct a password dictionary:

“123456”, “admin”,
“zxcasd”, “qwer”,

“8888”, “password”,
“

Collect

commonly used
passwords

Password Dictionary

• Construct a password dictionary:

Personal Information
Name: Thomas Jasper
Phone: +49 1573 1234567
Birthdate: January 21, 1988
...

.

“Thomas21011922”,
“Jasper1573123456”,

“TomJ2101”,...

Password Dictionary

• Construct a password dictionary:

.

Password Dictionary

Leakage

(Passwords was
stored in plaintext)

Online Dictionary Attack

.

• Online dictionary attack
• Attempt passwords from the dictionary until success
• Require Online connections: Verify guess via interacting with the legitimate system

Account: runzhizeng@gmail.com
password: [pw from the dictionary]

mailto:runzhizeng@gmail.com

Online Dictionary Attack

.

• Online dictionary attack
• Attempt passwords from the dictionary until success
• Require Online connections: Verify guess via interacting with the legitimate system
• Unavoidable (in most of cases), but Detectable and Accountable
• Non-cryptographic solution: Limit failed trials

Account: runzhizeng@gmail.com
password: [pw from the dictionary]

mailto:runzhizeng@gmail.com

Offline Dictionary Attack

.

• Offline dictionary attack

func_pw
= F(“RunzhiZeng123456”)

F is some publicly
known function with
collision resistance

Offline Dictionary Attack

.

• Offline dictionary attack
• Attempt passwords from the dictionary until success

func_pw
= F(“RunzhiZeng123456”)

Try all passwords from the dictionary
until find a pw such that

F(pw) = func_pw

F is some publicly
known function with
collision resistance

Offline Dictionary Attack

.

• Offline dictionary attack
• Attempt passwords from the dictionary until success
• Offline-Performable: Verify guess without interacting with the legitimate system
• Hard to detect and account

func_pw
= F(“RunzhiZeng123456”)

Try all passwords from the dictionary
until find a pw such that

F(pw) = func_pw

F is some publicly
known function with
collision resistance

Offline Dictionary Attack

.

• Offline dictionary attack
• Attempt passwords from the dictionary until success
• Offline-Performable: Verify guess without interacting with the legitimate system
• Hard to detect and account
• Primary Goal of designing secure password-based cryptosystems: resist offline attacks

func_pw
= F(“RunzhiZeng123456”)

Try all passwords from the dictionary
until find a pw such that

F(pw) = func_pw

F is some publicly
known function with
collision resistance

Offline Dictionary Attack
• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

H is some secure
hash function

User password

admin 𝑯𝑯 𝒑𝒑𝒑𝒑
Runzhi 𝐻𝐻 𝑝𝑝𝑤𝑤1
Tom 𝐻𝐻 𝑝𝑝𝑤𝑤2
... ...

Offline Dictionary Attack
• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

LoginRequest = (“admin”, hash_pw)

H is some secure
hash function

1. hash_pw = H(𝒑𝒑𝒑𝒑)

2. If hash_pw == 𝑯𝑯 𝒑𝒑𝒑𝒑 :
3. Accept
4. Else: Reject

User password

admin 𝑯𝑯 𝒑𝒑𝒑𝒑
Runzhi 𝐻𝐻 𝑝𝑝𝑤𝑤1
Tom 𝐻𝐻 𝑝𝑝𝑤𝑤2
... ...

Offline Dictionary Attack
• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

LoginRequest = (“admin”, hash_pw)

H is some secure
hash function

1. hash_pw = H(𝒑𝒑𝒑𝒑)

User password

admin 𝑯𝑯 𝒑𝒑𝒑𝒑
Runzhi 𝐻𝐻 𝑝𝑝𝑤𝑤1
Tom 𝐻𝐻 𝑝𝑝𝑤𝑤2
... ...

. Eavesdropping

2. If hash_pw == 𝑯𝑯 𝒑𝒑𝒑𝒑 :
3. Accept
4. Else: Reject

Offline Dictionary Attack
• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

LoginRequest = (“admin”, hash_pw)

H is some secure
hash function

1. hash_pw = H(𝒑𝒑𝒑𝒑)

User password

admin 𝑯𝑯 𝒑𝒑𝒑𝒑
Runzhi 𝐻𝐻 𝑝𝑝𝑤𝑤1
Tom 𝐻𝐻 𝑝𝑝𝑤𝑤2
... ...

. Eavesdropping

Try all pw from the dictionary until
find a match: H(pw) == hash_pw

2. If hash_pw == 𝑯𝑯 𝒑𝒑𝒑𝒑 :
3. Accept
4. Else: Reject

Offline Dictionary Attack
• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

LoginRequest = (“admin”, enc_pw)

K is some publicly
known symmetric key

1. enc_pw = AEAD(K, 𝒑𝒑𝒑𝒑)

2. local_enc_pw = AEAD(K, 𝑝𝑝𝑝𝑝),
 // where 𝑝𝑝𝑝𝑝 is the password of
“admin” from the local database
3. If local_enc_pw == enc_pw:
4. Accept
5. Else: Reject

User password

admin 𝒑𝒑𝒑𝒑
Runzhi 𝑝𝑝𝑤𝑤1
Tom 𝑝𝑝𝑤𝑤2
... ...

Offline Dictionary Attack
• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

LoginRequest = (“admin”, enc_pw)

1. enc_pw = AEAD(K, 𝒑𝒑𝒑𝒑)

2. local_enc_pw = AEAD(K, 𝑝𝑝𝑝𝑝),
 // where 𝑝𝑝𝑝𝑝 is the password of
“admin” from the local database
3. If local_enc_pw == enc_pw:
4. Accept
5. Else: Reject

User password

admin 𝒑𝒑𝒑𝒑
Runzhi 𝑝𝑝𝑤𝑤1
Tom 𝑝𝑝𝑤𝑤2
... ...

Run TLS handshake to
share a handshake key K

Offline Dictionary Attack
• Example: Does this login system resist offline attacks?

Account = “admin”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

LoginRequest = (“admin”, enc_pw)

1. enc_pw = AEAD(K, 𝒑𝒑𝒑𝒑)

2. local_enc_pw = AEAD(K, 𝑝𝑝𝑝𝑝),
 // where 𝑝𝑝𝑝𝑝 is the password of
“admin” from the local database
3. If local_enc_pw == enc_pw:
4. Accept
5. Else: Reject

User password

admin 𝒑𝒑𝒑𝒑
Runzhi 𝑝𝑝𝑤𝑤1
Tom 𝑝𝑝𝑤𝑤2
... ...

Run TLS handshake to
share a handshake key K

Eavesdropping

A Summary about Online/Offline Dictionary Attack

Online Dictionary Attack Offline Dictionary Attack

Based on pre-constructed dictionaries

Type of Interaction
Have to be online,

one guess
= one interaction with the server

Offline, can be performed locally

Accountability Easy Hard

Detectability Easy Hard

Security
consideration Unavoidable Primary Goal:

resist offline attacks

Solution Restrict the number of
failed attempts, ... Need cryptographic techniques!

Authentication using Passwords
• Most common practice: TLS + password (e.g., widely used in HTTPs login)

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

User password

Runzhi 𝒑𝒑𝒑𝒑
Tom 𝑝𝑝𝑤𝑤2
... ...

Run TLS handshake to
share a handshake key K

Login Request = (“Runzhi”, 𝒑𝒑𝒘𝒘)

(Encrypted by the TLS handshake key K)

Authentication using Passwords
• Most common practice: TLS + password (e.g., widely used in HTTPs login)

• Advantage: Easy to implement, rely on TLS, ...
• Disadvantage: Passwords are stored in plaintext

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

Run TLS handshake to
share a handshake key K

(Encrypted by the TLS handshake key K)

User password

Runzhi 𝒑𝒑𝒑𝒑
Tom 𝑝𝑝𝑤𝑤2
... ...

Login Request = (“Runzhi”, 𝒑𝒑𝒘𝒘)

Authentication using Passwords
• Most common practice: TLS + hashed password

• Now the server stores the hashes of passwords...
• What happens if the database is compromised?

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

User password

Runzhi 𝑯𝑯(𝒑𝒑𝒑𝒑)
Tom 𝐻𝐻(𝑝𝑝𝑤𝑤2)
... ...

Run TLS handshake to
share a handshake key K

Login Request = (“Runzhi”, H(𝒑𝒑𝒘𝒘))

(Encrypted by the TLS handshake key K)

Authentication using Passwords
• Most common practice: TLS + hashed password

• Now the server stores the hashes of passwords...
• Generally, passwords are reused across different servers...

Run TLS handshake to
share a handshake key K

(Encrypted by the TLS handshake key K)

User password

Runzhi 𝑯𝑯(𝒑𝒑𝒑𝒑)
Tom 𝐻𝐻(𝑝𝑝𝑤𝑤2)
... ...

User password

Runzhi 𝑯𝑯(𝒑𝒑𝒑𝒑)
Bob 𝐻𝐻(𝑝𝑝𝑤𝑤3)
... ...

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

Login Request = (“Runzhi”, H(𝒑𝒑𝒘𝒘))

Password Storage and Salting

User password

Runzhi 𝑯𝑯(𝒑𝒑𝒑𝒑)
Tom 𝐻𝐻(𝑝𝑝𝑤𝑤2)
... ...

User password

Runzhi 𝑯𝑯(𝒑𝒑𝒑𝒑)
Bob 𝐻𝐻(𝑝𝑝𝑤𝑤3)
... ...

Store hashes of passwords v.s Store passwords in plaintext
• The former one is almost as insecure as the latter one if different servers store hashes of passwords
• Why: Just storing hashes can lead to cross-system compromise, making it nearly as insecure as

storing plaintext passwords.

Password Storage and Salting

User password

Runzhi 𝑯𝑯(𝒑𝒑𝒑𝒑)
Tom 𝐻𝐻(𝑝𝑝𝑤𝑤2)
... ...

User password

Runzhi 𝑯𝑯(𝒑𝒑𝒑𝒑)
Bob 𝐻𝐻(𝑝𝑝𝑤𝑤3)
... ...

Store hashes of passwords v.s Store passwords in plaintext
• The former one is almost as insecure as the latter one if different servers store hashes of passwords
• Why: Just storing hashes can lead to cross-system compromise, making it nearly as insecure as

storing plaintext passwords.

• Solution: Salting (i.e., store salted hashes of passwords)

Password Storage and Salting

User password

Runzhi 𝐻𝐻(𝑝𝑝𝑝𝑝)
Tom 𝐻𝐻(𝑝𝑝𝑤𝑤2)
... ...

User password

Runzhi 𝐻𝐻(𝑝𝑝𝑝𝑝)
Bob 𝐻𝐻(𝑝𝑝𝑤𝑤3)
... ...

Password Storage and Salting

User password

Runzhi 𝒓𝒓,𝐻𝐻(𝒓𝒓,𝑝𝑝𝑝𝑝)
Tom 𝒓𝒓𝟐𝟐,𝐻𝐻(𝒓𝒓𝟐𝟐,𝑝𝑝𝑤𝑤2)
... ...

User password

Runzhi 𝒓𝒓𝒓,𝐻𝐻(𝒓𝒓𝒓, 𝑝𝑝𝑝𝑝)
Tom 𝒓𝒓𝟐𝟐′ ,𝐻𝐻(𝒓𝒓𝟐𝟐′ ,𝑝𝑝𝑤𝑤2)
... ...

𝒓𝒓, 𝒓𝒓2, 𝒓𝒓𝒓, 𝒓𝒓𝟐𝟐′ are independently
random strings (salt)

Password Storage and Salting

User password

Runzhi 𝒓𝒓,𝐻𝐻(𝒓𝒓,𝑝𝑝𝑝𝑝)
Tom 𝒓𝒓𝟐𝟐,𝐻𝐻(𝒓𝒓𝟐𝟐,𝑝𝑝𝑤𝑤2)
... ...

User password

Runzhi 𝒓𝒓𝒓,𝐻𝐻(𝒓𝒓𝒓, 𝑝𝑝𝑝𝑝)
Tom 𝒓𝒓𝟐𝟐′ ,𝐻𝐻(𝒓𝒓𝟐𝟐′ ,𝑝𝑝𝑤𝑤2)
... ...

𝒓𝒓, 𝒓𝒓2, 𝒓𝒓𝒓, 𝒓𝒓𝟐𝟐′ are independently
random strings (salt)

• Resistance to cross-system compromise

Authentication using Salted Hashes of Passwords
• TLS + salted hashes password

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

User password

Runzhi 𝒓𝒓,𝑯𝑯(𝒓𝒓,𝒑𝒑𝒑𝒑)
Tom 𝑟𝑟2,𝐻𝐻(𝑟𝑟2,𝑝𝑝𝑤𝑤2)
... ...

Run TLS handshake to
share a handshake key K

H(𝒓𝒓, 𝒑𝒑𝒘𝒘)

(Encrypted by the TLS handshake key K)

𝒓𝒓

LoginRequest = “Runzhi”

Authentication using Salted Hashes of Passwords
• TLS + salted hashes password

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

User password

Runzhi 𝒓𝒓,𝑯𝑯(𝒓𝒓,𝒑𝒑𝒑𝒑)
Tom 𝑟𝑟2,𝐻𝐻(𝑟𝑟2,𝑝𝑝𝑤𝑤2)
... ...

Run TLS handshake to
share a handshake key K

H(𝒓𝒓, 𝒑𝒑𝒘𝒘)

(Encrypted by the TLS handshake key K)

𝒓𝒓

LoginRequest = “Runzhi”

The server should send
the salt of the user in
every time it logs in

• TLS + salted & hashed passwords
• Use TLS to protect the transmission of pw
• No TLS handshake key => Cannot launch offline dictionary attacks

TLS + Salted Hashes of Passwords

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

Run TLS handshake to
share a handshake key K

H(𝒓𝒓, 𝒑𝒑𝒘𝒘)
(Encrypted by the TLS handshake key K)

𝒓𝒓

LoginRequest = “Runzhi”

User password_file

Runzhi 𝒓𝒓,𝑯𝑯(𝒓𝒓,𝒑𝒑𝒑𝒑)
Tom 𝑟𝑟2,𝐻𝐻(𝑟𝑟2, 𝑝𝑝𝑤𝑤2)
... ...

• TLS + salted & hashed passwords
• Use TLS to protect the transmission of pw
• No TLS handshake key => Cannot launch offline dictionary attacks

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

Run TLS handshake to
share a handshake key K

H(𝒓𝒓, 𝒑𝒑𝒘𝒘)
(Encrypted by the TLS handshake key K)

𝒓𝒓

LoginRequest = “Runzhi”

If the database is compromised,
 then one can launch offline dictionary attack...

User password_file

Runzhi 𝒓𝒓,𝑯𝑯(𝒓𝒓,𝒑𝒑𝒑𝒑)
Tom 𝑟𝑟2,𝐻𝐻(𝑟𝑟2, 𝑝𝑝𝑤𝑤2)
... ...

TLS + Salted Hashes of Passwords

• TLS + salted & hashed passwords
• Use TLS to protect the transmission of pw
• No TLS handshake key => Cannot launch offline dictionary attacks

Account = “Runzhi”
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

User password_file

Runzhi 𝒓𝒓,𝑯𝑯(𝒓𝒓,𝒑𝒑𝒑𝒑)
Tom 𝑟𝑟2,𝐻𝐻(𝑟𝑟2, 𝑝𝑝𝑤𝑤2)
... ...

Run TLS handshake to
share a handshake key K

H(𝒓𝒓, 𝒑𝒑𝒘𝒘)
(Encrypted by the TLS handshake key K)

𝒓𝒓

LoginRequest = “Runzhi”

If the database is compromised,
 then one can launch offline dictionary attack... Is it possible to increase the

difficulty of offline attacks?

TLS + Salted Hashes of Passwords

• Salted Challenge Response Authentication Mechanism

• Main idea:
1. Add iteration in computing salted & hashed password
2. Challenge-response Mechanism
3. Run over TLS

• Other Important Features:
 Inherent Resistance to Replay Attacks
 (TLS + salted & hashed passwords resists replay attacks because of TLS, while SCRAM
resists replay attacks inherently, independent of the transport layer.)
 Mutual Authentication

The SCRAM protocol

• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file = [𝒓𝒓,𝑯𝑯 𝒑𝒑𝒑𝒑, 𝒓𝒓]

Running time: 𝑻𝑻

• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file = [𝒓𝒓,𝑯𝑯 𝒑𝒑𝒑𝒑, 𝒓𝒓]

Running time: 𝑻𝑻

password_file = [𝒓𝒓,𝑯𝑯𝟐𝟐 𝒑𝒑𝒑𝒑,𝒓𝒓]
where 𝐻𝐻2 𝑝𝑝𝑝𝑝, 𝑟𝑟 = 𝐻𝐻(𝑝𝑝𝑝𝑝,𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑟𝑟))

• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file = [𝒓𝒓,𝑯𝑯 𝒑𝒑𝒑𝒑, 𝒓𝒓]

Running time: 𝑻𝑻

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file = [𝒓𝒓,𝑯𝑯𝟐𝟐 𝒑𝒑𝒑𝒑,𝒓𝒓]
where 𝐻𝐻2 𝑝𝑝𝑝𝑝, 𝑟𝑟 = 𝐻𝐻(𝑝𝑝𝑝𝑝,𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑟𝑟))

Running time: 𝟐𝟐 ⋅ 𝑻𝑻

• Add iteration in computing salted & hashed password:

The SCRAM protocol

Iterate_hash_with_salt(password, salt, num_of_iteration):
// salt can be 16- or 32-byte
// num_of_iteration can be 4096 or even 100,000
// All variable are bytes with big-endian order

𝑝𝑝𝑝𝑝 = password
padded_salt = salt || b'\x00\x00\x00\x01' // Append a 4-byte string 0x00000001 (in hex)

ℎ𝑎𝑎𝑎𝑎𝑎1 = HMAC(𝑝𝑝𝑝𝑝, padded_salt) // We use keyed HMAC, where the key to HMAC is the password
For 𝑖𝑖 from 2 to num_of_iteration: // Iteratively evaluate the HMAC of pw and previous HMAC

ℎ𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = HMAC(𝑝𝑝𝑝𝑝, ℎ𝑎𝑎𝑎𝑎ℎ𝑖𝑖−1)

Password_file = ℎ𝑎𝑎𝑎𝑎𝑎1 ⊕ ℎ𝑎𝑎𝑎𝑎𝑎2 ⊕⋯⊕ ℎ𝑎𝑎𝑎𝑎𝑎num_of_iteration // One integrate this part into the loop
return Password_file

• Add iteration in computing salted & hashed password:

The SCRAM protocol

A simpler description:
(using the notation 𝑯𝑯𝒏𝒏 𝒑𝒑𝒑𝒑, 𝒓𝒓 = Iterate_hash_with_salt(𝒑𝒑𝒑𝒑, 𝒓𝒓,𝒏𝒏)

Given 𝒓𝒓,𝒏𝒏,𝒑𝒑𝒑𝒑:

U1 = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝒑𝒑𝒑𝒑, 𝒓𝒓 || b'\x00\x00\x00\x01’)
U2 = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝒑𝒑𝒑𝒑, U1)
⋮
U𝑛𝑛−1 = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝒑𝒑𝒑𝒑, U𝑛𝑛−2)
U𝑛𝑛 = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝒑𝒑𝒑𝒑, U𝑛𝑛−1)

We compute 𝑯𝑯𝒏𝒏 𝒑𝒑𝒑𝒑, 𝒓𝒓 = U1 ⊕ U2 ⊕⋯⊕ Un−1 ⊕ Un

• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file = [𝒓𝒓,𝑯𝑯 𝒑𝒑𝒑𝒑, 𝒓𝒓]

Running time: 𝑻𝑻

• Add iteration in computing salted & hashed password:

The SCRAM protocol

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file
= [𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏 𝒑𝒑𝒑𝒑, 𝒓𝒓]

where 𝐻𝐻𝑛𝑛 𝑝𝑝𝑝𝑝, 𝑟𝑟 = Iterate_hash_with_salt(𝑝𝑝𝑝𝑝, 𝑟𝑟,𝑛𝑛)

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file = [𝒓𝒓,𝑯𝑯 𝒑𝒑𝒑𝒑, 𝒓𝒓]

Running time: 𝑻𝑻 Running time: 𝒏𝒏 ⋅ 𝑻𝑻

• Add iteration in computing salted & hashed password:

The SCRAM protocol

Significantly increase
the cost of offline
dictionary attacks

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file
= [𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏 𝒑𝒑𝒑𝒑, 𝒓𝒓]

where 𝐻𝐻𝑛𝑛 𝑝𝑝𝑝𝑝, 𝑟𝑟 = Iterate_hash_with_salt(𝑝𝑝𝑝𝑝, 𝑟𝑟,𝑛𝑛)

Offline dictionary
attacks

𝒑𝒑𝒑𝒑

password_file = [𝒓𝒓,𝑯𝑯 𝒑𝒑𝒑𝒑, 𝒓𝒓]

Running time: 𝑻𝑻 Running time: 𝒏𝒏 ⋅ 𝑻𝑻

• Challenge-response paradigm

The SCRAM protocol

𝒑𝒑𝒑𝒑 𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)

• Challenge-response paradigm: Client-proof

The SCRAM protocol

𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)𝒑𝒑𝒑𝒑

ServerChallenge:𝒓𝒓,𝒏𝒏, 𝒄𝒄𝒉𝒉𝟐𝟐

Request = 𝒄𝒄𝒉𝒉𝟏𝟏

1. sample a challenge 𝒄𝒄𝒉𝒉𝟐𝟐
uniformly at random

• Challenge-response paradigm: Client-proof

The SCRAM protocol

𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)

ServerChallenge:𝒓𝒓,𝒏𝒏, 𝒄𝒄𝒉𝒉𝟐𝟐 1. sample a challenge 𝒄𝒄𝒉𝒉𝟐𝟐
uniformly at random

2. Salted_pw = 𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)
3. Client_key = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(Salted_pw, “Client key”)
4. Auth_msg = [Client’s Name] || 𝒓𝒓,𝒏𝒏, 𝒄𝒄𝒉𝒉𝟏𝟏, 𝒄𝒄𝒉𝒉𝟐𝟐
5. Client_sign = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 𝐇𝐇 Client_key , Auth_msg // Here 𝐇𝐇 is the hash function used in 𝐇𝐇𝐌𝐌𝐀𝐀𝐂𝐂
6. Client_proof = Client_key ⊕ Client_sign

𝒓𝒓,𝒏𝒏,𝒑𝒑𝒑𝒑
Request = 𝒄𝒄𝒉𝒉𝟏𝟏

• Challenge-response paradigm: Client-proof

The SCRAM protocol

𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)

ServerChallenge:𝒓𝒓,𝒏𝒏, 𝒄𝒄𝒉𝒉𝟐𝟐 1. sample a challenge 𝒄𝒄𝒉𝒉𝟐𝟐
uniformly at random

6. Verify Client_proof

2. Salted_pw = 𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)
3. Client_key = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(Salted_pw, “Client key”)
4. Auth_msg = [Client’s Name] || 𝒓𝒓,𝒏𝒏, 𝒄𝒄𝒉𝒉𝟏𝟏, 𝒄𝒄𝒉𝒉𝟐𝟐
5. Client_sign = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 𝐇𝐇 Client_key , Auth_msg // Here 𝐇𝐇 is the hash function used in 𝐇𝐇𝐌𝐌𝐀𝐀𝐂𝐂
6. Client_proof = Client_key ⊕ Client_sign

ClientProof: Client_proof

𝒓𝒓,𝒏𝒏,𝒑𝒑𝒑𝒑
Request = 𝒄𝒄𝒉𝒉𝟏𝟏

• Challenge-response paradigm: Server-sign

The SCRAM protocol

𝒓𝒓,𝒏𝒏,𝒑𝒑𝒑𝒑 𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)

• Challenge-response paradigm: Server-sign

The SCRAM protocol

𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)𝒓𝒓,𝒏𝒏,𝒑𝒑𝒑𝒑

ClientChallenge: 𝒄𝒄𝒉𝒉𝟏𝟏
1. sample a challenge 𝒄𝒄𝒉𝒉𝟏𝟏

uniformly at random

• Challenge-response paradigm: Server-sign

The SCRAM protocol

𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)𝒓𝒓,𝒏𝒏,𝒑𝒑𝒑𝒑

ClientChallenge: 𝒄𝒄𝒉𝒉𝟏𝟏

2. Salted_pw = 𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)
3. Server_key = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(Salted_pw, ‘Client key’)
4. Auth_msg = [Client’s Name] || 𝒄𝒄𝒉𝒉𝟏𝟏
5. Server_sign= 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 Server_key, Auth_msg

ServerSign: Server_sign

1. sample a challenge 𝒄𝒄𝒉𝒉𝟏𝟏
uniformly at random

• Challenge-response paradigm: Server-sign

The SCRAM protocol

𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)𝒓𝒓,𝒏𝒏,𝒑𝒑𝒑𝒑

ClientChallenge: 𝒄𝒄𝒉𝒉𝟏𝟏

2. Salted_pw = 𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)
3. Server_key = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(Salted_pw, ‘Client key’)
4. Auth_msg = [Client’s Name] || 𝒄𝒄𝒉𝒉𝟏𝟏
5. Server_sign= 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 Server_key, Auth_msg

ServerSign: Server_sign

1. sample a challenge 𝒄𝒄𝒉𝒉𝟏𝟏
uniformly at random

6. Verify Server_sign

The SCRAM protocol

Account = [ClientName]
password = 𝒑𝒑𝒑𝒑
where 𝑝𝑝𝑝𝑝 is some string

Run TLS handshake to share
a handshake key K and

some channel binding info TLS_INFO

Auth_msg = [ClientName] || 𝒄𝒄𝒉𝒉𝟏𝟏||𝒄𝒄𝒉𝒉𝟐𝟐 || 𝒓𝒓 || 𝒏𝒏 || TLS_INFO

ServerFirst: 𝒄𝒄𝒉𝒉𝟏𝟏||𝒄𝒄𝒉𝒉𝟐𝟐, 𝒓𝒓,𝒏𝒏

ClientFirst: [ClientName], 𝒄𝒄𝒉𝒉𝟏𝟏

User password_file

Runzhi 𝒓𝒓,𝒏𝒏,𝑯𝑯𝒏𝒏(𝒓𝒓,𝒑𝒑𝒑𝒑)
Tom 𝑟𝑟2,𝑛𝑛,𝐻𝐻𝑛𝑛(𝑟𝑟2,𝑝𝑝𝑤𝑤2)
... ...

1. Pick a random
client challenge 𝒄𝒄𝒉𝒉𝟏𝟏 2. Pick a random

server challenge 𝒄𝒄𝒉𝒉𝟐𝟐

4. Verify Client_proof.
If valid:
Compute Server_sign
using Auth_msg

3. Compute Client_proof
using Auth_msg

5. Verify Server_sign

ClientFinal: TLS_INFO, 𝒄𝒄𝒉𝒉𝟏𝟏||𝒄𝒄𝒉𝒉𝟐𝟐, Client_proof

ServerFinal: Server_sign

Coding tasks

• Implement the SCRAM protocol and use your TLS implementation to protect it.

	Cryptography Engineering
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58

