Cryptography Engineering

* Lecture 10 (Jan 14, 2026)

* Today’s notes:
* Password and password security
e Salting, and use TLS to protect passwords

Password and its Security

e Password:

“admin” “123456” “I'Your_Name][Your_Birthday]”

“root” “b8sdhazyn216fsgk.]02=2v4h”

* Widely used in practice

User name:

URXXXXXX

Password:

Password and its Security

* Why password security is important:

Within a couple of weeks, however, Adobe was forced to acknowledge
that a more accurate figure for the number of people who were

impacted by the hack was some 38 million active users after a 3.8GB _-—
file containing more than 150 million usernames/passwords was Facebook Stored Hundreds of Millions of User Passwords ...

dumped on the net. 5oy 201 21 Mar 2019 — Hundreds of millions of Facebook users had their account passwords stored
in plain text and searchable by thousands of Facebook employees ...

m LinkedIn
https://www.linkedin.com » news » story » nearly-10-bill...

At the end of 2010, an incident that is known as CSDN Password
Nearly 10 billion passwords leaked Leakage Incident happened, and passwords from five websites,

In a leak that cybersecurity researchers are calling the largest of all time, almost 10 billion including CSDN, Tianya, Duduniu, 7k7k and 178.com, were leaked in
unique passwords have been posted to a hacking forum. several consecutive days.

The Biggest Password Leak in History , and all the leaked passwords are in plaintext. 20 aug 2014

In an unprecedented cyber security event, the largest password leak ever recorded has just
occurred, exposing over 10 billion passwords.

(source: Google search)

Password and its Security

* Properties of passwords:
* Mainly used for authentication (e.g., hash and compare), easy to replace,...

Human-generated and memorizable

Short length, Low Entropy
Highly Reused

Password and its Security

* Low Entropy
* Lack of randomness, predictability, Short length, Limited character set,...
* Example: (Most people use their personal email as website accounts, e.g., Amazon, ...)
Account: “[YourName]@gmail.com”
“admin”, “1234567”, “hello1237, ...
“I'Your/Your Partner’s Name]_[Birthday]’, ...

“[Your Phone number]”, “[Family’s phone number]”...

“gwerty” (English keyboard), “gwertz” (German keyboard), ...

NI KASSEL
E

U
\" RSITAT

Password and its Security

* Low Entropy
* Lack of randomness, predictability, Short length, Limited character set,...
* Example: (Most people use their personal email as website accounts, e.g., Amazon, ...)
Account: “[YourName]@gmail.com”
“admin”, “1234567”, “hello1237, ...
“I'Your/Your Partner’s Name]_[Birthday]’, ...

“[Your Phone number]”, “[Family’s phone number]”...

“gwerty” (English keyboard), “gwertz” (German keyboard), ...

* Short, patterned, no randomness, and highly related to personal information

Password and its Security

* Highly reused: Different portals, but the same password...

N

Steam
Online banking

PayPal

Account: Your Gmail
Pa SSWO rd. *kkkkkkk

Facebook/LinkedIn

Scam site

Password Dictionary

* Dictionary Attack:

e Attack (Guess) using password dictionaries

* Focus on known/common password combinations, more efficient than brute force...

123456
password
12345678
querty
123456789
12345
1234
111111
1234567
dragon
123123
baseball
abc123
football
monkey
letmein
696969
shadow
master
666666
gwertyuiop
123321
mustang
1234567890
michael
654321
pussy
superman
lgaz2wsx

nascar
monster
tigers
yellow
XXXXXX
123123123
gateway
marina
diablo
bulldog
qwerl234
compag
purple
hardcore
banana
junior
hannah
123654

lakers
iceman
money
cowboys
987654
london
tennis
999999
nccl701
coffee

0000
miller

qlw2e3r4
fuckoff
brandon

yamaha
chester
mother

abcd1234
scorpion
gazwsxed
101010
butter
carlos
password
dennis
slipknot
querty12
booger
asdf
1991
black
startrek
12341234
cameron
newyork
rainbow
nathan
john
1992
rocket
viking
redskins
butthead
asdfeghik
1212
sierra
peaches
gemini

braves
shelby
godzilla
beaver
fred
tomcat
august
buddy
airborne
1993
1988
lifehack
9994999
brooklyn
animal
platinum
phantom
online
xavier
darkness
blink182
power|
fish
green
789456123
voyager
police
travis
12qwaszx
heaven
snowball
lover

bondee7
alexis
1111111
samson
5156
willie
scorpio
bonnie
gators
benjamin
voodoo
driver
dexter
2112

jason
calvin
freddy
212121
creative
12345a
sydney
rush2112
1989
asdfghik
red123
bubba
4815162342
passwerd
trouble
gunner
happy

U
v

Il KASSEL

R S

I TAT

Password Dictionary

* Construct a password dictionary:

“123456”, “admin”,
“zxcasd”, “gwer?,
“8888”, “password”,

13

Collect
O Qo R

commonly used
passwords

NI KASSEL
E

U
\" RSITAT

Password Dictionary

* Construct a password dictionary:

)
BN

Personal Information >
Name: Thomas Jasper o
Phone: +49 1573 1234567 e
Birthdate: January 21, 1988 “Thomas21011922”,

“Jasper15731234567,
“TomJ21017%,...

NI KASSEL
E

U
\" RSITAT

Password Dictionary

* Construct a password dictionary:

(Passwords was
stored in plaintext)

Online Dictionary Attack

—
»

Account: runzhizeng@gmail.com
password: [pw from the dictionary]
N

* Online dictionary attack
* Attempt passwords from the dictionary until success
* Require Online connections: Verify guess via interacting with the legitimate system

NI KASSEL
E

U
\" RSITAT

mailto:runzhizeng@gmail.com

Online Dictionary Attack

Account: runzhizeng@gmail.com
password: [pw from the dictionary]
N

—

* Online dictionary attack
* Attempt passwords from the dictionary until success

* Require Online connections: Verify guess via interacting with the legitimate system
* Unavoidable (in most of cases), but Detectable and Accountable
* Non-cryptographic solution: Limit failed trials

NI KASSEL
E

U
\" RSITAT

mailto:runzhizeng@gmail.com

Offline Dictionary Attack

I

* Offline dictionary attack

func_pw

= F(“RunzhiZeng123456”)

F is some publicly

known function with
collision resistance

Offline Dictionary Attack

func_pw
D - = F(“RunzhiZeng123456”)
Try all passwords from the dictionary F is some publicly
until find a pw such that known function with
F(pw) =func_pw collision resistance

* Offline dictionary attack
* Attempt passwords from the dictionary until success

Offline Dictionary Attack

func_pw
D - = F(“RunzhiZeng123456”)
Try all passwords from the dictionary F is some publicly
until find a pw such that known function with
F(pw) =func_pw collision resistance

* Offline dictionary attack
* Attempt passwords from the dictionary until success
* Offline-Performable: Verify guess without interacting with the legitimate system
* Hard to detect and account

Offline Dictionary Attack

func_pw
= F(“RunzhiZeng123456”)

Try all passwords from the dictionary
until find a pw such that
F(pw) = func_pw

F is some publicly

known function with
collision resistance

* Offline dictionary attack
* Attempt passwords from the dictionary until success

* Offline-Performable: Verify guess without interacting with the legitimate system
* Hard to detect and account

* Primary Goal of designing secure password-based cryptosystems: resist offline attacks

Offline Dictionary Attack

 Example: Does this login system resist offline attacks?

Account = “admin” @ H is some secure admin H(pw)
password = pw m hash function Runzhi H(pw;)
where pw is some string Tom H(pw,)

Offline Dictionary Attack

 Example: Does this login system resist offline attacks?

Account =“admin” @ His some secure admin H(pw)

password = pw m hash function Runzhi H(pw;)

where pw is some string Tom H(pws,)

1. hash_pw = H(pw)

LoginRequest = (“admin”, hash_pw)

v

2. If hash_pw == H(pw):
3. Accept
4. Else: Reject

Offline Dictionary Attack

 Example: Does this login system resist offline attacks?

Account =“admin” @ His some secure admin H(pw)

password = pw m hash function Runzhi H(pw;)

where pw is some string Tom H(pws)

1. hash_pw = H(pw)

LoginRequest = (“admin”, hash_pw)

...................... 2. If hash_pw == H(pw):

‘ _______ . 3. Accept
Q a Eavesdropping 4. Else: Reject

v

Offline Dictionary Attack

 Example: Does this login system resist offline attacks?

Account =“admin” @ His some secure admin H(pw)

password = pw m hash function Runzhi H(pw;)

where pw is some string Tom H(pws)

1. hash_pw = H(pw)

LoginRequest = (“admin”, hash_pw)

v

If hash_pw == H(pw):

2.
‘ ______ 3. Accept
A o Eavesdropping 4.

Else: Reject

L
E)
Py
Py
.
.
.
.s
““““
.
L)
.s
Py
.
.
.
.s

Try all pw from the dictionary until
find a match: H(pw) == hash_pw

Offline Dictionary Attack

 Example: Does this login system resist offline attacks?

Account =*“admin” @ Kis some pUbliCly admin pw
password = pw m known symmetric key Runzhi pW;
where pw is some string Tom pw,

1. enc_pw = AEAD(K, pw)

LoginRequest = (“admin”, enc_pw)

v

2. local_enc_pw = AEAD(K, pw),
// where pw is the password of

“admin” from the local database

3. If local_enc_pw ==enc_pw:

4. Accept

5. Else: Reject

Offline Dictionary Attack

 Example: Does this login system resist offline attacks?

Account =“admin” @ . admin pw
password = pw m Run TLS handshake to Runzhi pWy
where pw is some string) share a handshake key K Tom —

1. enc_pw = AEAD(K, pw)

LoginRequest = (“admin”, enc_pw) 2. local_enc_pw = AEAD(K, pw),
// where pw is the password of

“admin” from the local database
3. If local_enc_pw ==enc_pw:

4. Accept

5. Else: Reject

v

Offline Dictionary Attack

 Example: Does this login system resist offline attacks?

Account =“admin” @ . admin pw
password = pw m Run TLS handshake to Runzhi pWy
where pw is some string) share a handshake key K Tom —

1. enc_pw = AEAD(K, pw)

LoginRequest = (“admin”, enc_pw) 2. local_enc_pw = AEAD(K, pw),
"""" // where pw is the password of

................. “admin” from the local database

v

‘ """ 3. If local_enc_pw ==enc_pw:
I Q T Eavesdropping 4 Accept
= 5. Else: Reject

A Summary about Online/Offline Dictionary Attack

- Online Dictionary Attack Offline Dictionary Attack

Based on pre-constructed dictionaries

Type of Interaction

Accountability

Detectability

Security
consideration

Solution

Have to be online,
one guess
= one interaction with the server

Easy

Easy
Unavoidable

Restrict the number of
failed attempts, ...

Offline, can be performed locally

Hard
Hard

Primary Goal:
resist offline attacks

Need cryptographic techniques!

Authentication using Passwords

* Most common practice: TLS + password (e.g., widely used in HTTPs login)

Account = “Runzhi” >
password = pw @ Run TLS handshake to
where pw is some string m share a handshake key K

A

Login Request = (“Runzhi”, pw)

(Encrypted by the TLS handshake key K)

Runzhi pw

Tom PWo

Authentication using Passwords

* Most common practice: TLS + password (e.g., widely used in HTTPs login)

Account = “Runzhi” @ > Runzhi pw
password = pw Run TLS handshake to Tom pW,
where pw is some string m) share a handshake key K
Login Request = (“Runzhi”, pw)
(Encrypted by the TLS handshake key K)
* Advantage: Easy to implement, rely on TLS, ...
* Disadvantage: Passwords are stored in plaintext
UNIKASSEL
VERSITAT

Authentication using Passwords

* Most common practice: TLS + hashed password

Account = “Runzhi” @ > e I
password = pw Run TLS handshake to Tom H(pws,)
where pw is some string m) share a handshake key K
Login Request = (“Runzhi”, H(pw))
(Encrypted by the TLS handshake key K)
* Now the server stores the hashes of passwords...
* What happens if the database is compromised?
UNIKASSEL
VERSITAT

Authentication using Passwords

* Most common practice: TLS + hashed password

. Runzhi H(pw)
" Tom H(pw,)

Account = “Runzhi”
@ Run TLS handshake to

password = pw
where pw is some string m share a handshake key K

Login Request = (“Runzhi”, H(pw))
(Encrypted by the TLS handshake key K) Bl User | password

* Runzhi H(pw)
* Now the server stores the hashes of passwords...
Bob H(pws)
* Generally, passwords are reused across different servers...

A
v

Password Storage and Salting

Runzhi H(w) .. (&) <} Runzhi H(pw)
Tom H(pw,) o) = Bob H(pws)

Store hashes of passwords v.s Store passwords in plaintext
* The formeroneis almost as insecure as the latter one if different servers store hashes of passwords
 Why: Just storing hashes can lead to cross-system compromise, making it nearly as insecure as
storing plaintext passwords.

Password Storage and Salting

Runzhi H(w) .. (&) <} Runzhi H(pw)
Tom H(pw,) o) = Bob H(pws)

Store hashes of passwords v.s Store passwords in plaintext
* The formeroneis almost as insecure as the latter one if different servers store hashes of passwords

Why: Just storing hashes can lead to cross-system compromise, making it nearly as insecure as
storing plaintext passwords.

 Solution: Salting (i.e., store salted hashes of passwords)

Password Storage and Salting

Runzhi H(pw)
Tom H(pwsy)

Runzhi H(pw)
Bob H(pws)

&

Password Storage and Salting

Runzhi r,H(r,pw)

Tom 5, H(ry, pwsy)

=

r,T,, 1,1, are independently
random strings (salt)

Runzhi r', H(r', pw)

Tom 5, H(r), pwy)

=

Password Storage and Salting

Runzhi r,Hr,pw) ... (ZY) «»s..-
......... \ Y S
Tom T2, H(1r2, pwy)

=

* Resistance to cross-system compromise

r,T,, 1,1, are independently
random strings (salt)

Runzhi r', H(r', pw)

Tom 5, H(r), pwy)

=

Authentication using Salted Hashes of Passwords

 TLS + salted hashes password

User | password
Account = “Runzhi” @ Runzhi r, H(r,pw)
Run TLS handshake to

password = pw Tom 1y, H(1ry, pw5)
where pw is some string m share a handshake key K 2 2 2

v

LoginRequest = “Runzhi”

(Encrypted by the TLS handshake key K)

Authentication using Salted Hashes of Passwords

 TLS + salted hashes password

Account = “Runzhi”

&)

share a handshake key K

where pw is some string

@ Runzhi r,H(r,pw)
= Run TLS handshake to
password = pw Y Tom 5, H(1y, pW5)

The server should send
the salt of the user in
every time it logs in

(Encrypted by the TLS handshake key K)

TLS + Salted Hashes of Passwords

 TLS + salted & hashed passwords
* Use TLS to protect the transmission of pw
* No TLS handshake key => Cannot launch offline dictionary attacks

\ 4

password = pw M share a handshake key K Runzhi 7, H(r,pw)
where pw is some string

Account =“Runzhi” () Run TLS handshake to @ User | password.file

Tom 15, H(15, pW5)
LoginRequest = “Runzhi”

% ‘ ‘ “

(Encrypted by the TLS handshake key K)

TLS + Salted Hashes of Passwords

 TLS + salted & hashed passwords
* Use TLS to protect the transmission of pw
* No TLS handshake key => Cannot launch offline dictionary attacks

Account = “Runzhi” @ Run TLS handshake to m password_file

password = pw ' share a handshake key K Runzhi 7, H(r,pw)

where pw is some string <
. . % Tom 15, H(15, pW5)
LoginRequest = “Runzhi” 7
7’
, cee eeoe

If the database is compromised,
then one can launch offline dictionary attack...

TLS + Salted Hashes of Passwords

 TLS + salted & hashed passwords
* Use TLS to protect the transmission of pw
* No TLS handshake key => Cannot launch offline dictionary attacks

Account = “Runzhi” @ Run TLS handshake to m password_file

password = pw ' share a handshake key K Runzhi 7, H(r,pw)

where pw is some string <
. . % Tom 15, H(15, pW5)
LoginRequest = “Runzhi” 7
, LN LN

If the database is compromised,

then one can launch offline dictionary attack...

I Is it possible to increase the !
! difficulty of offline attacks? '

The SCRAM protocol

e Salted Challenge Response Authentication Mechanism

* Main idea:
1. Add iteration in computing salted & hashed password

2. Challenge-response Mechanism
3. RunoverTLS

* Other Important Features:
» Inherent Resistance to Replay Attacks

(TLS + salted & hashed passwords resists replay attacks because of TLS, while SCRAM
resists replay attacks inherently, independent of the transport layer.)

» Mutual Authentication

The SCRAM protocol

* Add iteration in computing salted & hashed password:

password_file = [r, H(pw, 1) |

Offline dictionary
attacks

Runningtime: T

The SCRAM protocol

* Add iteration in computing salted & hashed password:

password_file = [r, H(pw, 1) |

Offline dictionary
attacks

Runningtime: T

password_file = [r, H*(pw, 1)]

where H?(pw, 1) = H(pw, H(pw, 1))

The SCRAM protocol

* Add iteration in computing salted & hashed password:

password_file = [r, H(pw, 1) |

Offline dictionary

attacks

Runningtime: T

password_file = [r, H*(pw, 1)]

where H?(pw, 1) = H(pw, H(pw, 1))

Offline dictionary

attacks

Runningtime: 2 - T

The SCRAM protocol

* Add iteration in computing salted & hashed password:

Iterate_hash_with_salt(password, salt, num_of _iteration):
// salt can be 16- or 32-byte
/l num_of_iteration can be 4096 or even 100,000
// All variable are bytes with big-endian order

pw = password
padded_salt = salt || b"\x00\x00\x00\x01"' // Append a 4-byte string 0x00000001 (in hex)

hash; = HMAC(pw, padded_salt) // We use keyed HMAC, where the key to HMAC is the password
For i from 2 to num_of iteration: // Iteratively evaluate the HMAC of pw and previous HMAC
hash; = HMAC(pw, hash;_4)

Password_file = hash, @ hash, @ - D hash,ym of iteration // ONe integrate this part into the loop
return Password_file

The SCRAM protocol

* Add iteration in computing salted & hashed password:

A simpler description:
(using the notation H" (pw, r) = Iterate_hash_with_salt(pw,r,n)

Givenr,n,pw:

U; = HMAC(pw, 1 || b"\x00\x00\x00\x01")

U, = HMAC(pw,U,)

Up-1 =HMAC(pw,U;,_,)
U, =HMAC(pw,U,_,)

We compute H*(pw,r) =U; U, D :--P U, D U,

The SCRAM protocol

* Add iteration in computing salted & hashed password:

password_file = [r, H(pw, 1) |

Offline dictionary
attacks

Runningtime: T

The SCRAM protocol

* Add iteration in computing salted & hashed password:

password_file = [r, H(pw, 1) |

Offline dictionary
attacks

Runningtime: T

password_file
=[r,n, H*(pw, 1) |

where H" (pw, r) = Iterate_hash_with_salt(pw, r,n)

Offline dictionary
attacks

Runningtime:n - T

The SCRAM protocol

* Add iteration in computing salted & hashed password:

password_file
=[r,n, H"(pw,7) |
password_file=[r, H(pw,r) | where H" (pw, r) = Iterate_hash_with_salt(pw, r,n)

Offline dictionary Offline dictionary
attacks attacks

Runningtime: T Runningtime:n - T

Significantly increase \|

/
|
I the cost of offline |
'\ dictionary attacks !

The SCRAM protocol

* Challenge-response paradigm

)
=

pw

=

r,n, H" (r,pw)

The SCRAM protocol

* Challenge-response paradigm: Client-proof

2 s

Request=chq
pw

v

r,n, H" (r,pw)

ServerChallenge:r, n, ch, 1. sample a challenge ch,
uniformly at random

a

The SCRAM protocol

* Challenge-response paradigm: Client-proof

oA LN

] s

Request=chq

v

r,n, pw r,n, H" (r,pw)

ServerChallenge:r, n, ch, 1. sample a challenge ch,
uniformly at random

P
<

Salted_pw = H"(r,pw)

Client_key = HMAC(Salted_pw, “Client key”)

Auth_msg =[Client’s Name] || r,n, ch4, ch,

Client_sign = HMAC(H(Client_key),Auth_msg) // Here H is the hash function used in HMAC
Client_proof = Client_key @ Client_sign

The SCRAM protocol

* Challenge-response paradigm: Client-proof

. s

Request=chq

v

r,n, pw r,n, H" (r,pw)

ServerChallenge:r, n, ch, 1. sample a challenge ch,
uniformly at random

P
<

2. Salted_pw= H"(r,pw)

3. Client_key=HMAC(Salted_pw, “Client key”)

4. Auth_msg=[Client’s Name] || r,n,ch¢,ch,

5. Client_sign = HMAC(H(Client_key),Auth_msg) // Here H is the hash function used in HMAC

6. Client _proof = Client_key @ Client_sign

ClientProof: Client_proof 6. Verify Client_proof

UNIKASSEL
VERSITAT

The SCRAM protocol

* Challenge-response paradigm: Server-sign

)
=

r,n pw

=

r,n, H" (r,pw)

The SCRAM protocol

* Challenge-response paradigm: Server-sign

)
=

r,n,pw

1. sample a challenge ch4

uniformly at random ClientChallenge: chq

\ 4

=

r,n, H" (r,pw)

The SCRAM protocol

* Challenge-response paradigm: Server-sign

a @
r,n, pw r,n, H" (r,pw)

1. sample a challenge ch4
uniformly at random ClientChallenge: chq

o
>

2. Salted _pw=H"(r,pw)

3. Server_key =HMAC(Salted_pw, ‘Client key’)
4. Auth_msg=[Client’s Name] || ch4

5. Server_sign=HMAC(Server_key, Auth_msg)

ServerSign: Server_sign

a

NI KASSEL
E

U
\" RSITAT

The SCRAM protocol

* Challenge-response paradigm: Server-sign

a @
r,n, pw r,n, H" (r,pw)

1. sample a challenge ch4
uniformly at random ClientChallenge: chq

o
>

2. Salted _pw=H"(r,pw)

3. Server_key =HMAC(Salted_pw, ‘Client key’)
4. Auth_msg=[Client’s Name] || ch4

5. Server_sign=HMAC(Server_key, Auth_msg)

ServerSign: Server_sign

a

6. Verify Server_sign

NI KASSEL
E

U
\" RSITAT

The SCRAM protocol

9
BN

Account =[ClientName]
password = pw
where pw is some string

v

Run TLS handshake to share
a handshake key K and
some channel binding info TLS_INFO

3. Compute Client_proof ServerFirst: chy||ch,, r,n

using Auth_msg

1. Pick arandom
client challenge ch4 ClientFirst: [ClientName], chq

ClientFinal: , chq||ch,, Client_proof

5. Verify Server_sign ServerFinal: Server_sign

Auth_msg =[ClientName] || chq||chy || T || n || TLS_INFO

m password_file

Runzhi r,n, H"(r,pw)

Tom 1y, 1, H (15, pw5)

2. Pickarandom
server challenge ch,

4. Verify Client_proof.
If valid:

Compute Server_sign
using Auth_msg

Coding tasks

e Implementthe SCRAM protocol and use your TLS implementation to protect it.

	Cryptography Engineering
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58

