Cryptography Engineering

* Lecture 11 (Jan 21, 2026)

* Today’s notes:
* Pre-computation on hashed passwords
* The OPAQUE protocol
* Summary on password-based authentication

* Coding tasks/Homework:
* Offline dictionary attacks
* Pre-computation attacks v.s. offline attacks without pre-computation
* Analyze the SCRAM protocol
* Implement the OPAQUE protocol

NI KASSEL
E

U
\"/ RSITAT



Previous Password-based Protocols

* TLS + hashed & salted passwords
* The SCRAM protocol




Previous Password-based Protocols

* TLS + hashed & salted passwords
* The SCRAM protocol

* Goal: Authentication via passwords; Resistance to offline attacks.




Previous Password-based Protocols

* TLS + hashed & salted passwords

» Store (r, H(pw, r)) in the server, where r is the salt.
» Send 1 to the client, then the client prove its identity by responding H(pw, r)
* Encrypted by TLS

* The SCRAM protocol




Previous Password-based Protocols

* TLS + hashed & salted passwords
* The TLS + SCRAM protocol

e Store (r, n, H"(pw, r)) in the server, where r is the salt and n is the number of iterations.
Send r and n to the client, then the client prove its identity by responding H"(pw, 1)

The server also needs to prove that it knows H*(pw, r)

Encrypted by TLS

Larger n => it takes longer to recover pw

UNIKASSEL
VERSITAT



Previous Password-based Protocols

* TLS + hashed & salted passwords
* The TLS + SCRAM protocol

* Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage




Previous Password-based Protocols

* TLS + hashed & salted passwords
* The TLS + SCRAM protocol

* Advantage of storing hashed-salted passwords:

1. Avoid cross-system leakage
2. Increase required time to recover the password after leakage using offline attacks




Previous Password-based Protocols

* TLS + hashed & salted passwords
* The TLS + SCRAM protocol

Required Time after leakage

Plain pw 0o(1)
* Advantage of storing hashed-salted passwords: Ripw) o(DpD)
" Hipw, 1 o(ID))

1. Avoid cross-system leakage
2. Increase required time to recover the password after leakage using offline attacks




Previous Password-based Protocols

* TLS + hashed & salted passwords
* The TLS + SCRAM protocol

Required Time after leakage

Plain pw 0o(1)
* Advantage of storing hashed-salted passwords: Ripw) o(DpD)
" Hipw, 1 o(ID))

1. Avoid cross-system leakage
2. Increase required time to recover the password after leakage using offline attacks

This is also important in practice,

e.g., notifying users to change their
passwords after the leakage.




Previous Password-based Protocols

* TLS + hashed & salted passwords
* The TLS + SCRAM protocol

Required Time after leakage

Plain pw 0o(1)
* Advantage of storing hashed-salted passwords: Ripw) o(DpD)
" Hipw, 1 o(ID))

1. Avoid cross-system leakage
2. Increase required time to recover the password after leakage using offline attacks

* All protocols reveal salt (and the number of iterations) during the execution...




Previous Password-based Protocols

* TLS + hashed & salted passwords
* The TLS + SCRAM protocol

Required Time after leakage

Plain pw 0o(1)
* Advantage of storing hashed-salted passwords: Ripw) o(DpD)
" Hipw, 1 o(ID))

1. Avoid cross-system leakage
2. Increase required time to recover the password after leakage using offline attacks

* All protocols reveal salt (and the number of iterations) during the execution...

* May lead to Precomputation Attacks
* O(|D]) » O(log|D|) oreven O(1)




Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.
* The adversary can learn the saltin some easy ways...

@ LoginReq: Bob
S

Username: Bob > r,H(pw, 1)
Password: pw




Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.
* The adversary can learn the saltin some easy ways...

@ LoginReq: Bob
e =

Username: Bob r,H(pw, 1)
Password: pw

A

a

v

Username: Bob

Suppose that the adversary
knows the username...




Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.
* The adversary can learn the saltin some easy ways...

@ LoginReq: Bob ~ LoginReq: Bob
o - - . @

Username: Bob r,H(pw, 1)
Password: pw

A

a

v

Username: Bob

Suppose that the adversary

knows the username...
Then it can get the salt...




Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.
* The adversary can learn the salt in some easy ways...
* Precompute a table containing all hashed passwords with the same salt:

~ LoginReq: Bob
r > 5

r,H(pw,7)

Username: Bob




Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.
* The adversary can learn the salt in some easy ways...

* Precompute a table containing all hashed passwords with the same salt:

LoginReq: Bob

r

@ :

r,H(pw,7)

=

Username: Bob

The H(pw, r) values

pwWq
pw,
pws;

PWy

H(pwy, 1)
H(pw, 1)
H(pws, 1)
H(pw,, 1)

The table can be computed locally...

ASSE

U I K L
\"/ RSITAT



Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.

* The adversary can learn the salt in some easy ways...
* Precompute a table containing all hashed passwords with the same salt:

=

r,H(pw,7)

H(pw, 1)

Username: Bob

The H(pw, r) values

pwWq
pw,
pws;

PWy

H(pwy, 1)
H(pw, 1)
H(pws, 1)
H(pw,, 1)

The table can be computed locally...

ASSE

U I K L
\"/ RSITAT



Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.
* The adversary can learn the salt in some easy ways...

* Precompute a table containing all hashed passwords with the same salt:

=

The H(pw, r) values

H(pwy,7)
r,H(pw,71) pW2 H(pw, 1)
Username: Bob pw H(pws, 7)
3 3»
H(pw,r) Search H(pw, 1) | PWy H(pwy, 1)
> pw
Can be finished The table can be computed locally...
in O(log |D]) time...
UNIKASSEL
VERSITAT



Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.
* The adversary can learn the salt in some easy ways...

* Precompute a table containing all hashed passwords with the same salt:

The H(pw, r) values
@ pw, H(pw1,7)

r,H(pw,r pw;
® ) Username: Bob
pws
Search H(r, pw
Why O(log |D])? rpw) | PWq

pw

Can be finished
in O(log |DJ) time...

Sort all H(pw, r) values before leakage, and
then binary search...

P
<

H(pw,, 1)
H(pW3, 7‘)
H(pw,, 1)

The table can be computed locally...

ASSE

U I K L
\"/ RSITAT



Precomputation Attacks on Passwords

* Suppose that the password is stored by hashing and salting.
* The adversary can learn the salt in some easy ways...
* Precompute a table containing all hashed passwords with the same salt:

The H(pw, r) values
-\ f-
pwq H(pw,,7)
Storage Required Time | no salt revealed + salt revealed + bW, H(PWZ, 7‘)
after leakage precomputation precomputation pWs H(pW3 r)
Plain pw 0o(1 0o(1 o1
P (1) ) L —> PW4 H(pw,, 1)
H(pw) o(|D[) O(log|DI) O(log|DI)
", Hpw, 1) , o(ID1) o(lp) O(log|D|) d The table can be computed locally...
y in O(log |D|) time...
UNIKASSEL
VERSITAT



Precomputation Attacks on Passwords

Attack Method to Required Time Required Time
recover pw before leakage after leakage

Brute-force on
Dictionary i 0(|DD

Precomputation < 0O(|D|-log|D|) < 0O(log|D|)

e Comparison:




Precomputation Attacks on Passwords

Attack Method to Required Time Required Time
recover pw before leakage after leakage
Brute-force on
o(|Dl)

Dictionary i
Precomputation < 0O(|D|-log|D|) < 0O(log|D|)

e Comparison:

* Reveal salt during the protocol => Precomputation attacks
* How can we protect the salt?




Precomputation Attacks on Passwords

Comparlson. Attack Method to Required Time Required Time
recover pw before leakage after leakage
Brute-force on
o(|Dl)

Dictionary i
Precomputation < 0(|D] - log|D|) < O(log|D])

Reveal salt during the protocol => Precomputation attacks

How can we protect the salt?
* No straight-forward non-cryptographic solutions
* Cryptographic solution using algebraic structures: Oblivious Pseudorandom Function (OPRF)

Password authentication protocol without revealing salt: OPAQUE




DH-based OPRF

e Classical PRF:
 Pseudorandomness: If the PRF key is random, then the output of PRF is pseudorandom




DH-based OPRF

e Classical PRF:
 Pseudorandomness: If the PRF key is random, then the output of PRF is pseudorandom

 Oblivious PRF;:

* Pseudorandomness
* PRFinthe two-party (client-server) computation setting

mz Exchange some ]
protocol messages

Input ‘ k
OPRF(k, input)




DH-based OPRF

e Classical PRF:
* Pseudorandomness: If the PRF key is random, then the output of PRF is pseudorandom

 Oblivious PRF:

* Pseudorandomness

* PRFinthe two-party (client-server) computation setting

* Key privacy: The client learns OPRF(k, input), but it learns nothing about the key k

* Input privacy: The server knows the client has evaluated the ORRF, but it does not know the input

A :

Exchange some
o°’ m protocol messages
OPRF(k, input)




DH-based OPRF

* 9
A

Input: x

(G, 9,9):

A q-order group G with a generator g
h:{0,1}* - G
A hash function map the input into a group element
H: A normal hash function (e.g., SHA2586,..)




DH-based OPRF

(G, 9,9):

A q-order group G with a generator g
h:{0,1}* - G
A hash function map the input into a group element
H: A normal hash function (e.g., SHA2586,..)

h(x)®

A\ 4




DH-based OPRF

(G, 9,9):

A q-order group G with a generator g
h:{0,1}* - G
Ooo @ A hash function map the input into a group element
H: A normal hash function (e.g., SHA2586,..)

q h(x)a

A\ 4

h(x0)* " (= (h(x)M)")

'

-1
Computea™" €7,

A" = (h(x)* )
Compute H(x, h(x)")




DH-based OPRF

(@, 9,9):
A q-order group G with a generator g

h:{0,1} » G
Ooo @ A hash function map the input into a group element
H: A normal hash function (e.g., SHA2586,..)

h(x)®

Key Privacy: h(x)*
=> k, solve dlog...

h(x)*" (= (h(x)")")

'

-1
Computea™" €7,

A" = (h(x)* )
Compute H(x, h(x)")

Input Privacy:

h(x)% is “random?”...




DH-based OPRF

(G, 9,9):

A q-order group G with a generator g
h:{0,1}* - G
@ A hash function map the input into a group element
H: A normal hash function (e.g., SHA2586,..)

q h(x)“

A\ 4

h(x0)* " (= (h(x)M)")

'

-1
Computea™" €7,

A" = (h(x)* )
Compute H(x, h(x)")

The OPRF here is

OPRF(key: k, input: x) = H(x, h(x)¥)




DH-based OPRF

(G, 9,9):

A q-order group G with a generator g
h:{0,1}* - G
@ A hash function map the input into a group element
H: A normal hash function (e.g., SHA2586,..)

1 h(pw)*®

»
»

h(pw)** (= (h(x)*)")

'

Compute a™! €Z,

h(pw)*® = (h(pw)*)*
Compute H(pw, h(pw)?)

1

=

Key: s (as the salt)




DH-based OPRF

D
BN

Input: pw

Ol<—$ Zq

h(pw)*®

h(pw)®*

A 4

P
«

h(pw)® = (R(pw)@)*
rw = H(pw, h(pw)?)

* Onlythe client knows the password

=

Key: s (as the salt)

* Onlythe server knows the salt




DH-based OPRF

Input: pw Key: s (as the salt)

a <—$ Zq h(pw)a
h(pw)**

A 4

P
«

h(pw)® = (R(pw)@)*

rw = H{pw, h(pw)S) * Therwvalueis pseudorandom by the pseudorandomness of

OPREF, but it can not be directly used as the session key!
. * rwis always the same, but we expect that a new execution of
* Only the client knows the password the protocol produces a new session key...




DH-based OPRF

D
BN

Input: pw

C(<—$ Zq

=

Key: s (as the salt)
h(pw)®

P
«

A 4

h(pw)®*

h(pw)® = (h(pw)**)*™
rw = H(pw, h(pw)?)

* Onlythe client knows the password

The rw value is pseudorandom by the pseudorandomness of
OPREF, but it can not be directly used as the session key!
* rwis always the same, but we expect that a new execution of
the protocol produces a new session key...

Solution: Use AKE protocol to share a session key, and use rw
to protect the AKE messages...




DH-based OPRF + AKE

* Brief introduction of AKE (Authenticated Key Exchange)
* Two parties share an authenticated key using their long-term key pairs




DH-based OPRF + AKE

* Brief introduction of AKE (Authenticated Key Exchange)
* Two parties share an authenticated key using their long-term key pairs

° S

* Forexample:

(Ipke, Isk), lpks (Ipks, Isks), Ipk,
Generate (epk,, esk,) epk,
epk; " Generate (epks, esk;)
SK = KeyClient(lsk., esk, lpks, epks,...) SK = KeyServer(lskg, esks, lpk., epk,)

* Security Requirement: Pseudorandom session key, authentication, ...

NI KASSEL
E

U
\"/ RSITAT



DH-based OPRF + AKE

* Brief introduction of AKE (Authenticated Key Exchange)
* Concrete example: The TripleDH (3DH) protocol

D
A

(lpkw lSkc) = (g% a),
Ipks = g°

Generate
(epk. = g*, esk. = x)

* The session key is SK = HKDF(g%, g%, g%, g7, g%, g*?, g*¥)

=

(Ipks, Isks) = (g°, b),

Ipk, = ga
— X
epkc =g . Generate
eka =gy (epks :.gyreSks =_')7)

y 3

NI KASSEL
E

U
\"/ RSITAT



DH-based OPRF + AKE

D
BN

pw

=

s,w = H(pw, h(pw)?)

Suppose that the
server has the rw value




DH-based OPRF + AKE

D
BN

pw

=

s,w = H(pw, h(pw)?)

(lpk,, lsk.) < AKE.KeyGen
(lpkg, Isk) < AKE.KeyGen

Generate AKE key pairs




DH-based OPRF + AKE

D
BN

pw

=

s,w = H(pw, h(pw)?)

(lpk,, lsk.) < AKE.KeyGen
(lpkg, Isk) < AKE.KeyGen

key_info = (Ipk,, Isk., lpk;)

rw_key = KDF(rw)
enc_keys = AEAD(rw_key, key_info)

Encrypt generated keys
using rw

U
\")



DH-based OPRF + AKE

D
BN

pw

=

s,w = H(pw, h(pw)?)

(Ipke, Isk.), (Ipks, Isks)

key_info = (Ipk,, Isk., lpk;)

rw_key = KDF(rw)

enc_keys = AEAD(rw_key, key_info)




DH-based OPRF + AKE

D
BN

pw

a < Zq h(pw)“

=

s,w = H(pw, h(pw)?)

(Ipke, Isk.), (Ipks, Isks)

key_info = (Ipk,, Isk., lpk;)

rw_key = KDF(rw)

enc_keys = AEAD(rw_key, key_info)

h(pw)**

»
»

1 <

h(pw)® = (h(pw)**)*
rw = H(pw, h(pw)?)




DH-based OPRF + AKE

D
BN

pw

a < Zq h(pw)“

h(pw)*?, enc_keys

»
»

1 <

h(pw)® = (h(pw)**)*
rw = H(pw, h(pw)?)
rw_key = KDF(rw)
key_info= AEAD.Dec(rw_key, enc_keys) //Clientgets (Ipk,, Isk,., Ipk.)

=

s,w = H(pw, h(pw)?)

(Ipke, Isk.), (Ipks, Isks)
key_info = (Ipk,, Isk., lpk;)
rw_key = KDF(rw)
enc_keys = AEAD(rw_key, key_info)




DH-based OPRF + AKE

2, =
pw s, rw=H(pw, h(pw)?)

(Ipke, Iskc), (Ipks, Isks)
key_info = (Ipk,, Isk., lpk;)
rw_key = KDF(rw)

enc_keys = AEAD(rw_key, key_info)
a «g 7 h(pw)®

»
»

h(pw)*?, enc_keys

R(pw)* = (h(pw)@$) "~
rw = H(pw, h(pw)?)
rw_key = KDF(rw)

Now the client can run the
key_info= AEAD.Dec(rw_key, enc_keys) //Clientgets (Ipk,, Isk,., Ipk.)

AKE protocol with Server




OPQAUE - Overview of Registration

) =

password: pw (“Register”, Username, pw)

Encrypted by TLS

v

s «g Lq //Each user should have unique salt

rw = H(pw, h(pw)*)

rw_key = KDF(rw)

(lpk,, lsk.) < AKE.KeyGen, (Ipk;, Isk,) < AKE.KeyGen
client_key_info = (lpk,, sk, lpk;)

enc_client_keys = AEAD(rw_key, client_key_info)

ASSE

U I K L
\"/ RSITAT



OPQAUE - Overview of Registration

2 S

Username
password: pw (“Register”, Username, pw)

v

Then the server store {
user: Username// ... as index
salt: s
(Ipke, server_k_bundle: lpk_, lpk;, lsk

client_enc_k_bundle: enc_client_keys
... // Auxiliary information
}in the password database




OPQAUE - Stage 1: OPRF

9D
BN

Username, password: pw

a — 7, LoginRequest = (Username, h(pw)%)




OPQAUE - Stage 1: OPRF

9D
BN

Username, password: pw

=

a5 L, LoginRequest = (Username, h(pw)?%)

Retrieve (s, server_k_bundle, client_enc_k_bundle)
// ...corresponds to the username




OPQAUE - Stage 1: OPRF

Username, password: pw

a — 7, LoginRequest = (Username, h(pw)?%)

[
»

Retrieve (s, server_k_bundle, client_enc_k_bundle)
// ...corresponds to the username
h(pw)%*, client_enc_k_bundle

«

h(pw)® = (h(pw)**)*™

rw = H(pw, h(pw)?)

rw_key = KDF(rw)

client_key info= AEAD.Dec(rw_key, client enc_k_bundle)




OPQAUE - Stage 1: OPRF

Username, password: pw

a — 7, LoginRequest = (Username, h(pw)?%)

[
»

Retrieve (s, server_k_bundle, client_enc_k_bundle)

// ...corresponds to the username
h(pw)%*, client_enc_k_bundle

«

h(pw)® = (h(pw)**)*™

rw = H(pw, h(pw)?)

rw_key = KDF(rw)

client_key info= AEAD.Dec(rw_key, client enc_k_bundle)

Parse client key info = (lpk,, Isk., lpks) Parse server_k_bundle = (Ipk,, lpks, Isky)

UNIKASSEL
VERSITAT



OPQAUE - Stage 2: AKE

9D
BN

=

Username, password: pw
OPRF stage

Parse client_key info = (lpk,, Isk,, lpk)

Parse server_k_bundle = (Ipk,, lpk;, lsk)




OPQAUE - Stage 2: AKE

Username, password: pw
OPRF stage

Parse client_key info = (lpk,, Isk,, lpk) Parse server_k_bundle = (Ipk,, lpk;, lsk)

AKE stage




OPQAUE - Stage 2: AKE

2 s

Username, password: pw

OPREF stage

Parse client_key info = (lpk,, Isk,, lpk) Parse server_k_bundle = (Ipk,, lpk;, lsk)
Generate (epk,, esk,) epk,

o
L

Generate (epks, esk;)
epk; SK = KeyServer(...)

a

SK = KeyClient(...)




OPQAUE - Stage 3: Key Confirmation

2 S

Username, password: pw

OPRF stage

Parse client_key info = (lpk,, Isk,, lpk) Parse server_k_bundle = (Ipk,, lpk;, lsk)

AKE stage (Homework)

SK = KeyClient(...) SK = KeyServer(...)




OPQAUE - Stage 3: Key Confirmation

2 S

Username, password: pw

OPRF stage

Parse client_key info = (lpk,, Isk,, lpk) Parse server_k_bundle = (Ipk,, lpk;, lsk)

AKE stage (Homework)

SK = KeyClient(...) SK = KeyServer(...)

Key Confirmation (Homework)




OPQAUE - Summary

@ Registration:
m Instead of storing (salt, H(salt pw)), we store

(salt, AEAD(rw, [AKE keys], ...)), where rw = DH-OPRF(salt, pw)
Username, password: pw // This allows the future messages exchange to not reveal
the salt (to prevent precomputation)

OPREF stage:

Allow the client to compute rw (to recover the
AKE keys) without revealing the salt

AKE stage:
Use AKE protocol to share a fresh session key

Key Confirmation:

Confirm both parties share the same key




Summary on Password-based Authentication

Use passwords to authenticate identities

Storage of passwords & Protocols:
— Plaintext (or hashed without salt) password: l’
— Hashed + salted + iterated password: 13 (SCRAM, ...)
— OPRF passwords: pég i1de (OPAQUE)

OPAQUE: secure guarantee evenin an insecure TLS connection...

In Practice: Run over TLS




Homework

* (1) Launch offline attacks on the hashed password (SHA3-256)
* a. See the sample code https://github.com/RunzhiZeng/CryptoEng W2526_RustCode
* b.Thetarget (encoded in base64): 8yQ28QbbPQYfvpta2FBSgsZTGZIFAVYMhn7ePNbaKV8=
* c.Use SHA3-256 library.
* Python: hashlib.sha3_256
* Rust:sha3="0.10% base64 ="0.13"
* (2) Analyze SCRAM (Write a simple pdf document):
* a.Which parts of SCRAM provide “client authentication”?
* b.Which parts of SCRAM provide “server authentication”
e c.lfwe donotuseTLS to protect SCRAM, then which parts may cause offline dictionary attacks?
* (3) Implement the OPAQUE protocol
* The specification is presented on the next page

* You need to use hash-to-curve functions when implementing DH-OPRF:
* Sample code: https://github.com/RunzhiZeng/CryptoEng W2526_RustCode

UNIKASSEL
VERSITAT


https://github.com/RunzhiZeng/CryptoEng_W2526_RustCode
https://github.com/RunzhiZeng/CryptoEng_W2526_RustCode

Homework

* (3) Implement the following simplified OPAQUE protocol

O,

o Registration
pw

OPRF stage
AKE stage: 3DH

Key Confirmation




Homework

AKE stage: 3DH

9 (G, g,9):

m A q-order group G with a generator g

sk, = a €4 Z,
lpk, =A=9g%€ G
Ilpks =B € G

X ¢ 1L epk, = x

=

Isks = b € T,
lpk, = A€ G
Ipk, =B=g"€G

epks =y

P

v

y s Lq
SK = 3DH-KServer (b, y, A, X)

<

SK = 3DH-KClient(a, x, B,Y)

(The 3DH-Kclient/KServer algorithms are given on the next page...)

ASSE

U I K L
\"/ RSITAT



Homework

3DH-KClient(a, x,B,Y)
1. SK =HKDF(B*,Y*,Y%)
2. return SK

3DH-KServer(b, y, A, X)
1. SK =HKDF(X?, XY, AY)
2. return SK




Homework

(3) Implement the following simplified OPAQUE protocol

.
() OPRF stage @
AKE stage: 3DH

SK SK

(K., K;) = HKDF(SK, (“Key Confirmation”)
mac'. = HMAC(K,, “Client KC”)
macs = HMAC(K,, “Server KC”)

(K., Ky) = HKDF(SK, (“Key Confirmation”)
mac, = HMAC(K,, “Client KC”)
mac's = HMAC(Kj, “Server KC”)
mac,

»
»

mac

A

Check mac’, =, mac,
If valid, then accept SK

Check mac’'s =, macy
If valid, then accept SK

U I K
\") R S

T

ASSE
A

L
T



Homework

 DDL for 3@ homework set:

Feb 11t , 2026 at 11:59 PM




Further Reading

* OPAQUE paper: https://eprint.iacr.org/2018/163
 OPAQUE IETF draft: https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html



https://eprint.iacr.org/2018/163
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html

	Slide 1: Cryptography Engineering 
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

