
Cryptography Engineering 
• Lecture 11 (Jan 21, 2026)
• Today’s notes:

• Pre-computation on hashed passwords
• The OPAQUE protocol
• Summary on password-based authentication

• Coding tasks/Homework:
• Offline dictionary attacks
• Pre-computation attacks v.s. offline attacks without pre-computation
• Analyze the SCRAM protocol
• Implement the OPAQUE protocol
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• Goal: Authentication via passwords; Resistance to offline attacks.
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Previous Password-based Protocols

• TLS + hashed & salted passwords 
• The TLS + SCRAM protocol

• Store 𝒓, 𝒏, 𝑯𝒏 𝒑𝒘, 𝒓  in the server, where 𝒓 is the salt and 𝒏 is the number of iterations.
• Send 𝒓 and 𝒏 to the client, then the client prove its identity by responding 𝑯𝒏 𝒑𝒘, 𝒓  

• The server also needs to prove that it knows 𝑯𝒏 𝒑𝒘, 𝒓

• Encrypted by TLS
• Larger 𝑛 => it takes longer to recover 𝑝𝑤
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2. Increase required time to recover the password after leakage using offline attacks

Storage Required Time after leakage

Plain pw 𝐎(𝟏)
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Previous Password-based Protocols

• TLS + hashed & salted passwords 
• The TLS + SCRAM protocol

• Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage
2. Increase required time to recover the password after leakage using offline attacks

Storage Required Time after leakage

Plain pw 𝐎(𝟏)

H(pw) 𝐎( 𝑫 )

r, H(pw, r) 𝐎( 𝑫 )

This is also important in practice, 
e.g., notifying users to change their 

passwords after the leakage.
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• All protocols reveal salt (and the number of iterations) during the execution…
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Previous Password-based Protocols

• TLS + hashed & salted passwords 
• The TLS + SCRAM protocol

• Advantage of storing hashed-salted passwords:
1. Avoid cross-system leakage
2. Increase required time to recover the password after leakage using offline attacks

• All protocols reveal salt (and the number of iterations) during the execution…
• May lead to Precomputation Attacks 
• 𝐎 𝑫 → 𝐎 log 𝑫  or even 𝐎 1

Storage Required Time after leakage

Plain pw 𝐎(𝟏)

H(pw) 𝐎( 𝑫 )

r, H(pw, r) 𝐎( 𝑫 )



• Suppose that the password is stored by hashing and salting. 
• The adversary can learn the salt in some easy ways...

Precomputation Attacks on Passwords

Username:   Bob
Password:     𝑝𝑤

𝒓

LoginReq: Bob

…
𝒓, 𝑯(𝒑𝒘, 𝒓)
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• Suppose that the password is stored by hashing and salting. 
• The adversary can learn the salt in some easy ways...

Precomputation Attacks on Passwords

Username:   Bob
Password:     𝑝𝑤 Username:   Bob

𝒓

…

LoginReq: Bob

𝒓

LoginReq: Bob

Suppose that the adversary 
knows the username…

Then it can get the salt...

𝒓, 𝑯(𝒑𝒘, 𝒓)



• Suppose that the password is stored by hashing and salting. 
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• Precompute a table containing all hashed passwords with the same salt:
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• Suppose that the password is stored by hashing and salting. 
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

Username:   Bob

𝒓
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• Suppose that the password is stored by hashing and salting. 
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒑𝒘, 𝒓)
Username:   Bob

𝒓

LoginReq: Bob 𝑝𝑤 ∈ Dict The H(pw, r) values
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The table can be computed locally...

𝑯(𝒑𝒘, 𝒓)



• Suppose that the password is stored by hashing and salting. 
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

Username:   Bob

𝑝𝑤 ∈ Dict The H(pw, r) values

𝑝𝑤1 𝐇(𝑝𝑤1, 𝑟)

𝑝𝑤2 𝐇(𝑝𝑤2, 𝑟)

𝑝𝑤3 𝐇(𝑝𝑤3, 𝑟)

𝑝𝑤4 𝐇(𝑝𝑤4, 𝑟)

... ...

The table can be computed locally...

𝑯(𝒑𝒘, 𝒓) Search 𝑯(𝒑𝒘, 𝒓)

𝒑𝒘

𝒓

LoginReq: Bob
𝒓, Dict

Can be finished 
in O(log |D|) time...

𝒓, 𝑯(𝒑𝒘, 𝒓)



• Suppose that the password is stored by hashing and salting. 
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

Username:   Bob

𝑝𝑤 ∈ Dict The H(pw, r) values

𝑝𝑤1 𝐇(𝑝𝑤1, 𝑟)

𝑝𝑤2 𝐇(𝑝𝑤2, 𝑟)

𝑝𝑤3 𝐇(𝑝𝑤3, 𝑟)

𝑝𝑤4 𝐇(𝑝𝑤4, 𝑟)

... ...

The table can be computed locally...

𝑯(𝒓, 𝒑𝒘) Search 𝑯(𝒓, 𝒑𝒘)

𝒑𝒘

𝒓

LoginReq: Bob
𝒓, Dict

Can be finished 
in O(log |D|) time...

Why O(log |D|)? 
Sort all H(pw, r) values before leakage, and 
then binary search...

𝒓, 𝑯(𝒑𝒘, 𝒓)



• Suppose that the password is stored by hashing and salting. 
• The adversary can learn the salt in some easy ways...
• Precompute a table containing all hashed passwords with the same salt:

Precomputation Attacks on Passwords

𝒓, 𝑯(𝒓, 𝒑𝒘)
Username:   Bob

𝑝𝑤 ∈ Dict The H(pw, r) values

𝑝𝑤1 𝐇(𝑝𝑤1, 𝑟)

𝑝𝑤2 𝐇(𝑝𝑤2, 𝑟)

𝑝𝑤3 𝐇(𝑝𝑤3, 𝑟)

𝑝𝑤4 𝐇(𝑝𝑤4, 𝑟)

... ...

The table can be computed locally...

𝑯(𝒓, 𝒑𝒘) Search 𝑯(𝒓, 𝒑𝒘)

𝒑𝒘

𝒓

LoginReq: Bob
𝒓, Dict

Can be finished 
in O(log |D|) time...

Storage Required Time 
after leakage

no salt revealed + 
precomputation

salt revealed + 
precomputation

Plain pw 𝐎(𝟏) 𝐎(1) 𝐎(1)

H(pw) 𝐎( 𝑫 ) 𝐎(log 𝑫 ) 𝐎(log 𝑫 )

r, H(pw, r) 𝐎( 𝑫 ) 𝐎( 𝑫 ) 𝐎(𝐥𝐨𝐠 𝑫 )



Precomputation Attacks on Passwords

Attack Method to 
recover pw

Required Time 
before leakage

Required Time 
after leakage

Brute-force on 
Dictionary - 𝐎( 𝑫 )

Precomputation ≤ 𝐎( 𝑫 ⋅ log 𝑫 ) ≤ 𝐎(log 𝑫 )

• Comparison:
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• Comparison:

• Reveal salt during the protocol => Precomputation attacks
• How can we protect the salt?

• No straight-forward non-cryptographic solutions
• Cryptographic solution using algebraic structures: Oblivious Pseudorandom Function (OPRF)

• Password authentication protocol without revealing salt: OPAQUE

Precomputation Attacks on Passwords

Attack Method to 
recover pw

Required Time 
before leakage

Required Time 
after leakage

Brute-force on 
Dictionary - 𝐎( 𝑫 )

Precomputation ≤ 𝐎( 𝑫 ⋅ log 𝑫 ) ≤ 𝐎(log 𝑫 )
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• Pseudorandomness: If the PRF key is random, then the output of PRF is pseudorandom

DH-based OPRF
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• Classical PRF:
• Pseudorandomness: If the PRF key is random, then the output of PRF is pseudorandom

• Oblivious PRF:
• Pseudorandomness
• PRF in the two-party (client-server) computation setting
• Key privacy: The client learns OPRF(k, input), but it learns nothing about the key k
• Input privacy: The server knows the client has evaluated the ORRF, but it does not know the input

DH-based OPRF

Exchange some 
protocol  messages

kInputk?

OPRF(k, input)

Input?



DH-based OPRF

𝒌Input: 𝒙

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝑯(𝒙, 𝒉 𝒙 𝒌)
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ℎ 𝒙 𝛼
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A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
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𝐻: A normal hash function (e.g., SHA256,..)
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ℎ 𝒙 𝒌 = ℎ 𝒙 𝛼⋅𝒌 𝛼−1

Compute 𝐻(𝑥, ℎ 𝑥 𝑘)



DH-based OPRF

𝒌Input: 𝒙

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝑯(𝒙, 𝒉 𝒙 𝒌)

𝛼 ←$ ℤ𝑞
ℎ 𝒙 𝛼

ℎ 𝒙 𝛼⋅𝒌 (= ℎ 𝑥 𝛼 𝑘  )
Key Privacy: ℎ 𝑥 𝑘  
=> 𝑘, solve dlog...

Input Privacy:
ℎ 𝒙 𝛼 is “random”...

Compute 𝛼−1 ∈ ℤ𝑞

ℎ 𝒙 𝒌 = ℎ 𝒙 𝛼⋅𝒌 𝛼−1
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DH-based OPRF

𝒌Input: 𝒙

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝛼 ←$ ℤ𝑞
ℎ 𝒙 𝛼

ℎ 𝒙 𝛼⋅𝒌 (= ℎ 𝑥 𝛼 𝑘  )

Compute 𝛼−1 ∈ ℤ𝑞

ℎ 𝒙 𝒌 = ℎ 𝒙 𝛼⋅𝒌 𝛼−1

Compute 𝐻(𝑥, ℎ 𝑥 𝑘)

The OPRF here is 
OPRF(key: k, input: x) = 𝐻(𝑥, ℎ 𝑥 𝑘) 



DH-based OPRF

Key: 𝒔 (as the salt)Input: 𝒑𝒘

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

ℎ: 0,1 ∗ → 𝔾
A hash function map the input into a group element
𝐻: A normal hash function (e.g., SHA256,..)

𝛼 ←$ ℤ𝑞
ℎ 𝒑𝒘 𝛼

ℎ 𝒑𝒘 𝛼⋅𝒔 (= ℎ 𝑥 𝛼 𝑘  )

Compute 𝛼−1 ∈ ℤ𝑞

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 𝛼⋅𝒔 𝛼−1

Compute 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)



DH-based OPRF

Key: 𝒔 (as the salt)Input: 𝒑𝒘

𝛼 ←$ ℤ𝑞
ℎ 𝒑𝒘 𝛼

ℎ 𝒑𝒘 𝛼⋅𝒔

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 𝛼⋅𝒔 𝛼−1

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)

• Only the client knows the password • Only the server knows the salt



DH-based OPRF

Key: 𝒔 (as the salt)Input: 𝒑𝒘

𝛼 ←$ ℤ𝑞
ℎ 𝒑𝒘 𝛼

ℎ 𝒑𝒘 𝛼⋅𝒔

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 𝛼⋅𝒔 𝛼−1

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)

• Only the client knows the password • Only the server knows the salt

• The 𝒓𝒘 value is pseudorandom by the pseudorandomness of 
OPRF, but it can not be directly used as the session key!
• 𝑟𝑤 is always the same, but we expect that a new execution of 

the protocol produces a new session key…

• Solution: Use AKE protocol to share a session key, and use rw to 
protect the AKE messages…
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• Brief introduction of AKE (Authenticated Key Exchange)
• Two parties share an authenticated key using their long-term key pairs

DH-based OPRF + AKE



• Brief introduction of AKE (Authenticated Key Exchange)
• Two parties share an authenticated key using their long-term key pairs
• For example:

• Security Requirement: Pseudorandom session key, authentication, ...

DH-based OPRF + AKE

𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐 , 𝑙𝑝𝑘𝑠 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠 , 𝑙𝑝𝑘𝑐

𝑒𝑝𝑘𝑐

𝑒𝑝𝑘𝑠

𝑆𝐾 = KeyClient(𝑙𝑠𝑘𝑐, 𝑒𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠, 𝑒𝑝𝑘𝑠,…) 𝑆𝐾 = KeyServer(𝑙𝑠𝑘𝑠, 𝑒𝑠𝑘𝑠, 𝑙𝑝𝑘𝑐, 𝑒𝑝𝑘𝑐)

Generate (𝑒𝑝𝑘𝑐, 𝑒𝑠𝑘𝑐)

Generate (𝑒𝑝𝑘𝑠, 𝑒𝑠𝑘𝑠)



• Brief introduction of AKE (Authenticated Key Exchange)
• Concrete example: The TripleDH (3DH) protocol

• The session key is 𝑆𝐾 = HKDF(𝑔𝑎 , 𝑔𝑏, 𝑔𝑥, 𝑔𝑦, 𝑔𝑎𝑦, 𝑔𝑥𝑏, 𝑔𝑥𝑦)

DH-based OPRF + AKE

𝑙𝑝𝑘𝑐 , 𝑙𝑠𝑘𝑐 = 𝑔𝑎, 𝑎 ,
 𝑙𝑝𝑘𝑠 = 𝑔𝑏 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠 = (𝑔𝑏 , 𝑏), 

 𝑙𝑝𝑘𝑐 = 𝑔𝑎

𝑒𝑝𝑘𝑐 = 𝑔𝑥

𝑒𝑝𝑘𝑠 = 𝑔𝑦
Generate 

(𝑒𝑝𝑘𝑐 = 𝑔𝑥, 𝑒𝑠𝑘𝑐 = 𝑥)
Generate 

(𝑒𝑝𝑘𝑠 = 𝑔𝑦 , 𝑒𝑠𝑘𝑠 = 𝑦)



DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

Suppose that the 
server has the rw value



DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

Generate AKE key pairs

(𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐) ← AKE.KeyGen
(𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) ← AKE.KeyGen



DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

(𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐) ← AKE.KeyGen
(𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) ← AKE.KeyGen

 
key_info = (𝑙𝑝𝑘𝑐 , 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

Encrypt generated keys 
using rw



DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐 , (𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) 
key_info = (𝑙𝑝𝑘𝑐 , 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)



DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐 , (𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) 
key_info = (𝑙𝑝𝑘𝑐 , 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

𝛼 ←$ ℤ𝑞 ℎ 𝒑𝒘 𝛼

ℎ 𝒑𝒘 𝛼⋅𝒔, enc_keys 
ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 𝛼⋅𝒔 𝛼−1

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝑟𝑤)

key_info= AEAD.Dec(rw_key, enc_keys)
Client gets (𝒍𝒑𝒌𝒄, 𝒍𝒔𝒌𝒄, 𝒍𝒑𝒌𝒔)



DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐 , (𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) 
key_info = (𝑙𝑝𝑘𝑐 , 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

𝛼 ←$ ℤ𝑞 ℎ 𝒑𝒘 𝛼

ℎ 𝒑𝒘 𝛼⋅𝒔, enc_keys 
ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 𝛼⋅𝒔 𝛼−1

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)

key_info= AEAD.Dec(rw_key, enc_keys) // Client gets (𝒍𝒑𝒌𝒄, 𝒍𝒔𝒌𝒄, 𝒍𝒑𝒌𝒔)



DH-based OPRF + AKE

𝒔, 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)𝒑𝒘

𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐 , (𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) 
key_info = (𝑙𝑝𝑘𝑐 , 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

rw_key = KDF(𝒓𝒘)
enc_keys = AEAD(rw_key, key_info)

𝛼 ←$ ℤ𝑞 ℎ 𝒑𝒘 𝛼

ℎ 𝒑𝒘 𝛼⋅𝒔, enc_keys 
ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 𝛼⋅𝒔 𝛼−1

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)

key_info= AEAD.Dec(rw_key, enc_keys) // Client gets (𝒍𝒑𝒌𝒄, 𝒍𝒔𝒌𝒄, 𝒍𝒑𝒌𝒔)
Now the client can run the 
AKE protocol with Server



OPQAUE – Overview of Registration

Username
password: 𝒑𝒘

𝒔 ←$ ℤ𝑞  //Each user should have unique salt
 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)

rw_key = KDF(𝒓𝒘)
(𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐) ← AKE.KeyGen, (𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) ← AKE.KeyGen

 client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)
enc_client_keys = AEAD(rw_key, client_key_info)

(“Register”, Username, 𝒑𝒘)

Encrypted by TLS



OPQAUE – Overview of Registration

Username
password: 𝒑𝒘 (“Register”, Username, 𝒑𝒘)

Encrypted by TLS
𝒔 ←$ ℤ𝑞

 𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)

(𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐) ← AKE.KeyGen, (𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠) ← AKE.KeyGen
 client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

enc_client_keys = AEAD(rw_key, client_key_info)

Then the server store {
user: Username // … as index
salt: 𝒔
server_k_bundle: 𝒍𝒑𝒌𝒄, 𝒍𝒑𝒌𝒔, 𝒍𝒔𝒌𝒔

client_enc_k_bundle: enc_client_keys
… // Auxiliary information
} in the password database



OPQAUE – Stage 1: OPRF

Username, password: 𝒑𝒘

𝛼 ←$ ℤ𝑞
LoginRequest = (Username, ℎ 𝒑𝒘 𝛼 )



OPQAUE – Stage 1: OPRF

Username, password: 𝒑𝒘

LoginRequest = (Username, ℎ 𝒑𝒘 𝛼 )𝛼 ←$ ℤ𝑞

Retrieve (𝒔, server_k_bundle, client_enc_k_bundle)
// …corresponds to the username 



OPQAUE – Stage 1: OPRF

Username, password: 𝒑𝒘

LoginRequest = (Username, ℎ 𝒑𝒘 𝛼 )𝛼 ←$ ℤ𝑞

ℎ 𝒑𝒘 𝛼⋅𝒔, client_enc_k_bundle

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 𝛼⋅𝒔 𝛼−1
 

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)
client_key_info= AEAD.Dec(rw_key, client_enc_k_bundle)
Parse client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

Retrieve (𝒔, server_k_bundle, client_enc_k_bundle)
// …corresponds to the username 

Parse server_k_bundle = (𝑙𝑝𝑘𝑐, 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠)



OPQAUE – Stage 1: OPRF

Username, password: 𝒑𝒘

LoginRequest = (Username, ℎ 𝒑𝒘 𝛼 )𝛼 ←$ ℤ𝑞

ℎ 𝒑𝒘 𝛼⋅𝒔, client_enc_k_bundle

ℎ 𝒑𝒘 𝒔 = ℎ 𝒑𝒘 𝛼⋅𝒔 𝛼−1
 

𝒓𝒘 = 𝐻(𝒑𝒘, ℎ 𝒑𝒘 𝒔)
rw_key = KDF(𝒓𝒘)
client_key_info= AEAD.Dec(rw_key, client_enc_k_bundle)
Parse client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠)

Retrieve (𝒔, server_k_bundle, client_enc_k_bundle)
// …corresponds to the username 

Parse server_k_bundle = (𝑙𝑝𝑘𝑐, 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠)



OPQAUE – Stage 2: AKE

Username, password: 𝒑𝒘

OPRF stage

Parse client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠) Parse server_k_bundle = (𝑙𝑝𝑘𝑐, 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠)



OPQAUE – Stage 2: AKE

Username, password: 𝒑𝒘

OPRF stage

AKE stage

Parse client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠) Parse server_k_bundle = (𝑙𝑝𝑘𝑐, 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠)



OPQAUE – Stage 2: AKE

Username, password: 𝒑𝒘

Parse client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠) Parse server_k_bundle = (𝑙𝑝𝑘𝑐, 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠)

OPRF stage

𝑒𝑝𝑘𝑐

𝑒𝑝𝑘𝑠

Generate (𝑒𝑝𝑘𝑐, 𝑒𝑠𝑘𝑐)

Generate (𝑒𝑝𝑘𝑠, 𝑒𝑠𝑘𝑠)
𝑆𝐾 = KeyServer(…)

𝑆𝐾 = KeyClient(…)



OPQAUE – Stage 3: Key Confirmation

Username, password: 𝒑𝒘

OPRF stage

AKE stage (Homework)

Parse client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠) Parse server_k_bundle = (𝑙𝑝𝑘𝑐, 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠)

𝑆𝐾 = KeyServer(…)𝑆𝐾 = KeyClient(…)



OPQAUE – Stage 3: Key Confirmation

Username, password: 𝒑𝒘

OPRF stage

AKE stage (Homework)

Parse client_key_info = (𝑙𝑝𝑘𝑐, 𝑙𝑠𝑘𝑐, 𝑙𝑝𝑘𝑠) Parse server_k_bundle = (𝑙𝑝𝑘𝑐, 𝑙𝑝𝑘𝑠, 𝑙𝑠𝑘𝑠)

𝑆𝐾 = KeyServer(…)𝑆𝐾 = KeyClient(…)

Key Confirmation (Homework)



OPQAUE – Summary

Username, password: 𝒑𝒘

OPRF stage:
Allow the client to compute rw (to recover the 

AKE keys) without revealing the salt

AKE stage:
Use AKE protocol to share a fresh session key

Key Confirmation: 
Confirm both parties share the same key

Registration:
Instead of storing (salt, H(salt pw)), we store 

(salt, AEAD(rw, [AKE keys], …)), where rw = DH-OPRF(salt, pw)
// This allows the future messages exchange to not reveal 

the salt (to prevent precomputation)



Summary on Password-based Authentication

• Use passwords to authenticate identities

• Storage of passwords & Protocols: 
– Plaintext (or hashed without salt) password:           
– Hashed + salted + iterated password: (SCRAM, …)
– OPRF passwords:                  (OPAQUE)

• OPAQUE: secure guarantee even in an insecure TLS connection…

• In Practice: Run over TLS



• (1) Launch offline attacks on the hashed password (SHA3-256)
• a. See the sample code https://github.com/RunzhiZeng/CryptoEng_W2526_RustCode 

• b. The target (encoded in base64): 8yQ28QbbPQYfvpta2FBSgsZTGZlFdVYMhn7ePNbaKV8=
• c. Use SHA3-256 library. 

• Python: hashlib.sha3_256
• Rust: sha3 = "0.10“, base64 = "0.13"

• (2) Analyze SCRAM (Write a simple pdf document):
• a. Which parts of SCRAM provide “client authentication”?
• b. Which parts of SCRAM provide “server authentication”
• c. If we do not use TLS to protect SCRAM, then which parts may cause offline dictionary attacks?

• (3) Implement the OPAQUE protocol
• The specification is presented on the next page
• You need to use hash-to-curve functions when implementing DH-OPRF: 
• Sample code: https://github.com/RunzhiZeng/CryptoEng_W2526_RustCode 

Homework

https://github.com/RunzhiZeng/CryptoEng_W2526_RustCode
https://github.com/RunzhiZeng/CryptoEng_W2526_RustCode


• (3) Implement the following simplified OPAQUE protocol

Homework

OPRF stage

AKE stage: 3DH

Registration

Key Confirmation

𝑝𝑤



Homework

𝑙𝑠𝑘𝑐 = 𝑎 ∈$ ℤ𝑞

𝑙𝑝𝑘𝑐 = 𝐴 = 𝑔𝑎 ∈ 𝔾
𝑙𝑝𝑘𝑠 = 𝐵 ∈ 𝔾

𝑙𝑠𝑘𝑠 = 𝑏 ∈$ ℤ𝑞  
𝑙𝑝𝑘𝑐 = 𝐴 ∈ 𝔾 

 𝑙𝑝𝑘𝑠 = 𝐵 = 𝑔𝑏 ∈ 𝔾

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑒𝑝𝑘𝑐 = 𝑥

𝑒𝑝𝑘𝑠 = 𝑦

𝑥 ←$ ℤ𝑞

𝑆𝐾 = 3DH-KServer (𝑏, 𝑦, 𝐴, 𝑋)

𝑆𝐾 = 3DH-KClient(𝑎, 𝑥, 𝐵, 𝑌)

𝑦 ←$ ℤ𝑞

(The 3DH-Kclient/KServer algorithms are given on the next page…)

AKE stage: 3DH



Homework

3DH-KClient(𝑎, 𝑥, 𝐵, 𝑌)
1. 𝑆𝐾 =HKDF(𝐵𝑥 , 𝑌𝑥 , 𝑌𝑎)
2. return 𝑆𝐾

3DH-KServer(𝑏, 𝑦, 𝐴, 𝑋)
1. 𝑆𝐾 =HKDF(𝑋𝑏 , 𝑋𝑦 , 𝐴𝑦)
2. return 𝑆𝐾



• (3) Implement the following simplified OPAQUE protocol

Homework

OPRF stage

AKE stage: 3DH

𝑆𝐾 𝑆𝐾

(𝐾𝑐 , 𝐾𝑠) = HKDF(𝑆𝐾, (“Key Confirmation”)
𝑚𝑎𝑐𝑐 = HMAC(𝐾𝑐, “Client KC”)
𝑚𝑎𝑐′𝑠 = HMAC(𝐾𝑠, “Server KC”)

Check 𝑚𝑎𝑐′𝑠 =? 𝑚𝑎𝑐𝑠

If valid, then accept 𝑆𝐾

(𝐾𝑐 , 𝐾𝑠) = HKDF(𝑆𝐾, (“Key Confirmation”)
𝑚𝑎𝑐′𝑐 = HMAC(𝐾𝑐, “Client KC”)
𝑚𝑎𝑐𝑠 = HMAC(𝐾𝑠, “Server KC”)

Check 𝑚𝑎𝑐′𝑐 =? 𝑚𝑎𝑐𝑐

If valid, then accept 𝑆𝐾

𝑚𝑎𝑐𝑐

𝑚𝑎𝑐𝑠

Registration



Homework

• DDL for 3rd homework set: 

Feb 11th , 2026 at 11:59 PM



• OPAQUE paper: https://eprint.iacr.org/2018/163
• OPAQUE IETF draft: https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html 

Further Reading

https://eprint.iacr.org/2018/163
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html
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