Cryptography Engineering

* Lecture 12 (Jan 27, 2026)

* Today’s notes:
* Case study: Hash functions and Digital signature in Blockchain




Previous Topics

 Symmetric primitives: Hash functions, HKDF, HMAC, AEAD, ...

* Diffie-Hellman key exchange (DHKE), digital signature

e Certificate, TLS handshake

* Fujisaki-Okamoto Transform, CCA security

* Key encapsulation mechanism(KEM), post-quantum TLS (PQ-TLS), KEM-TLS
* Case study: X3DH + Double Ratchet => Secure messaging

* Password authentication, password storage (hashed + salted password)
 Password over TLS, SCRAM

* OPAQUE: Oblivious PRF + 3DH, against pre-computation attack
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Today’s Contents

 Hash & Signature in blockchains:
* Brief background: public authenticated ledger and blockchain
* Hash functions: Hash-linked blocks
* Merkle tree: Commitment, inclusion proofs
» ECDSA: Authorizing transaction
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Add the following history into

its Internal ledger:
(1) Bob spends 30€
(2) Alice receives 30€

(3) Time, Date, ...
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* Centralized trusted ledger
* The ledger (e.g., history of transactions) is maintained by some authority
* Centralized system




Trusted Ledger
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Some trusted bank

* Centralized trusted ledger
* The ledger (e.g., history of transactions) is maintained by some authority
* Centralized system

 Efficient: Fast confirmation
l‘  Simplicity and strong consistency

Cost-effective in many settings
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Trusted Ledger

D
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* Centralized trusted ledger

AN

P
Some trusted bank

* The ledger (e.g., history of transactions) is maintained by some authority

* Centralized system

|Q{

Require trusted parties
Single point of trust/failure
Limited transparency / verifiability

Potential censorship & Insider attacks
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Decentralized public authenticated ledger

 Can we maintain a ledger without trusting a single authority, while still keeping it
consistent and verifiable?

* Goal: Decentralized ledger that achieves
* No single trusted maintainer
* Public and transparent (e.g., anyone can verify)
* Authenticated (e.g., transaction history is tamper-evident)




Decentralized public authenticated ledger

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin(@gmx.com
www.bitcoin.org




Decentralized public authenticated ledger

* Use blockchain to build decentralized public authenticated ledger

* A blockchain system includes many components:
* E.g., Consensus mechanisms, peer-to-peer networking, smart contracts...

* |In this lecture, we focus on how to:
* Use hash functions to build blocks and link them into a chain
* Use Merkle trees to achieve tamper-evident commitment to transaction history
* Use signatures to authorize transactions and prove ownership
* Make them publicly verifiable
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Hash Chain

e et H be a hash function

* Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

Block 1 Block 2 Block 3 Block 4
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Hash Chain

e et H be a hash function

* Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

Block 1 Block 2 Block 3 Block 4

e Triviabsotution-S Wstoel Lthe: I

* Use hash function:

Digest = H(H(H(H( ,Block 1), Block 2), Block 3), Block 4)




Hash Chain

e et H be a hash function

* Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

Block 3 Block 4
(1) Header 3 (1) Header 4

Block 2
(1) Header 2

Block 1
(1) Header 1

(2) Data 3 (2) Data 4

(2) Data 1 (2) Data 2

e Triviabsotution-S Wstoel Lthe: I

* Use hash function (to hash the short headers):

Digest = H(H(H(H( Header 1), Header 2), Header 3), Header 4)




The Chain Structure in Bitcoin

Genesis * Anchor of the chain, no previous hashes
block « Hardcoded into Bitcoin applications
* Publicly known

GetHash() = BxE000000000810d6689cB35ae165831e034FF763aed6a2a6c172b3f1b6daBce2nf

hashMerkleRoot = Bx4aSeledbaab89f3a32518a88c31bc87618f76673e2cci7ab2127b7afdeda3zb

txNew.vin[8].scriptSig 4126604799 4 Bx736BOE616220726F0602874750F6C60616228646E6F63657320066F286B6E697262286E6F28726F6CEC65030E61684328303830322F6E614A2F333B2873656D605428656854
txNew.vout[8].nValue 58800000800

txNew.vout[8].scriptPubKey 8x5F1DF16B2B784CEALY BDBEBBAF74D385CDE12C11EESB455F3CA3BEFACIFECFO409B6DEG11FEAEBE2 TOAGRO30EG28ABDELC10EBT3871ABF16719274855FEBBFDBAGTE4 OP_CHECKSIG
block.nVersion = 1

block.nTime = 1231886585
block.nBits = Bxldeeffff
block.nNonce = 2883236893

CBlock(hash=000ee8e08819d6, ver=1, hashPrevBlock=0p0oeooeaseseee, hashMerkleRoot=4aSele, nTime=1231886585, nBits=1deeffff, nNonce=2883236893, vix=1)
CTransaction(hash=4aSele, ver=1, vin.size=1, vout.size=1, nLockTime=8)
CTxIn(COutPoint(@ees8sd, -1), coinbase e4ffffeeldel1p4455468652854696d65732030833214a61622132383839204368616263656c6C6T72206162206272696e6b286T66207365636F664286261696C6F75742066617220626166b73)
CTx0ut(nValue=56.808888008, scriptPubKey=8x5F1DF16B2B784C8A578DEE)
vMerkleTree: 4aSele




The Chain Structure in Bitcoin

Block O
(Genesis block)

Block 1:
Prev_hash = H(Block 0 Header)
Merkle_root =... (Explained later)

Other header fields...

Block body (Transactions)...

The header of a block includes:
* Prev_hash and Merkle_root,
* nVersion, nTime, nBits, and nNonce

The block body records the transactions included
in the block (and related metadata).




The Chain Structure in Bitcoin

Block O
Prev_hash

Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash

Other header fields
Block body




The Chain Structure in Bitcoin

Block O Block 1 Block 2 Block 3
Prev_hash *. Prev_hash *. Prev_hash Prev_hash

Other header fields Other header fields Other header fields Other header fields

Block body Block body Block body Block body

* “Chain” all blocks in order using hash function / pointer, i.e., prev_hash = H(prev_header)




The Chain Structure in Bitcoin

Block O Block 1 Block 2 Block 3
Prev_hash *. Prev_hash *. Prev_hash Prev_hash

Other header fields Other header fields Other header fields Other header fields

Block body Block body Block body Block body

* “Chain” all blocks in order using hash function / pointer, i.e., prev_hash = H(prev_header)
* What if a blockis tampered?




The Chain Structure in Bitcoin

Block O
Prev_hash
Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
(Tampered)

Block 3
Prev_hash

Other header fields
Block body




The Chain Structure in Bitcoin

Block O Block 1 Block 2
Prev_hash Prev_hash Prev_hash

Block 3
Prev_hash

Other header fields Other header fields Other header fields
Block body Block body Block body

Other header fields
Block body

* |f the header of block 2 was modified, then we can easily detect it via Block 3’s prev_hash.




The Chain Structure in Bitcoin

Block O Block 1 Block 2
Prev_hash Prev_hash Prev_hash

Block 3
Prev_hash

Other header fields Other header fields Other header fields
Block body Block body Block body

Other header fields
Block body

* |f the header of block 2 was modified, then we can easily detect it via Block 3’s prev_hash.

* But what if only the block body of Block 2 was modified (e.g., inserting or changing
transactions)?




The Block Structure in Bitcoin

Conceptually, a Bitcoin block body is an ordered list of transactions:
Block body = (txq, tx,, txs, ..., tx,)

Elmeld * Eachtransactionis a serialized objects (i.e., with specific data
Prev_hash . : :
structure like (inputs, outputs, scripts)...)

* The order matters
e How can we detect if some transactions are not valid?

Other header fields
Block body




The Block Structure in Bitcoin

Block i
Prev_hash

Other header fields
Block body

Conceptually, a Bitcoin block body is an ordered list of transactions:

Block body = (txq, tx,, txs, ..., tx,)

* Each transactionis a serialized objects (i.e., with specific data
structure like (inputs, outputs, scripts)...)

* The order matters
e How can we detect if some transactions are not valid?

* A straight-forward solution: Compute
tx_commitment = H(txq, tx,, ..., tx,,)

and store the hash in the block header.




The Block Structure in Bitcoin

Block i
Prev_hash

Other header fields
Block body

* How can we detect if some transactions are not valid?
Block body = (txq, tx,, txs3, ..., txy)

* A straight-forward solution: Compute
tx_commitment = H(txq, txy, ..., txy,)
and store the hash in the block header.

* Drawbacks: To verify, we must download the whole block to get all transactions
* Not friendly to light clients
* Not friendly to limited bandwidth or high latency network
* No efficient way to prove inclusion of a single transaction




The Block Structure in Bitcoin

How can we detect if some transactions are not valid?
Block body = (txq, tx,, txs3, ..., txy)

A straight-forward solution: Compute

Block i
Prev_hash

tx_commitment = H(txq, txy, ..., txy,)

Other header fields and store the hash in the block header.
Block body

Drawbacks: To verify, we must download the whole block to get all transactions
* Not friendly to light clients
* Not friendly to limited bandwidth or high latency network
* No efficient way to prove inclusion of a single transaction

In Bitcoin, we use Merkle tree to provide a compact and efficient commitment
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Merkle Tree

 Example: Generate a commitment of 8 transactions A,B,C,D,E,F,G, and H.




Merkle Tree

 Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A = H(transactions A)

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H




Merkle Tree

 Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash AB = H(Hash A || Hash B)

Hash AB Hash CD Hash EF Hash GH




Merkle Tree

 Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash ABCD = H(Hash AB || HashCD)

Hash ABCD Hash EFGH

Hash AB Hash CD Hash EF Hash GH




Merkle Tree

 Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.
Merkle_root = H(Hash ABCD || HashEFGH)

Root: Hash ABCDEFGH

Hash ABCD Hash EFGH

Hash AB Hash CD Hash EF Hash GH

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H
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Merkle Tree

* Merkle tree ensures that all leaf nodes (transactions) contribute to the root hash
* One leaf node modified => Different root hash

* How do we handle odd nhumbers of nodes?
* Duplicate the last leaf (which still preserves the property that every leaf influences the root hash)

Hash ABC

Hash AB Hash CC




Merkle Tree

* How can we verify a leaf is included in the committed set (i.e., included in the tree)?

Hash ABC

Hash AB Hash CC




Merkle Tree

How can we verify a leaf is included in the committed set (i.e., included in the tree)?

Hash ABC

Better solution: Merkle proof Hash AB Hash CC
Example: Verify tx, in Hash ABC

Trivial inefficient solution: Request all
transactions and re-construct the tree




Merkle Tree

* Merkle proof: Leaf node + Merkle path => Recompute the root hash

* Example: Verify tx, in Hash ABC
* Leafnode: txy
* Merkle path: Hash B, Hash CC

Hash ABC

Hash AB Hash CC




Merkle Tree

* Merkle proof: Leaf node + Merkle path => Recompute the root hash

Hash ABC

Hash AB Hash CC

* Example: Verify tx, in Hash ABC
* Leafnode: txy
* Merkle path: Hash B (right), Hash CC (right)

* Example: Verify txp in Hash ABC

* Leafnode: txp
* Merkle path: Hash A (left), Hash CC (right)




Merkle Tree

Merkle proof: Leaf node + Merkle path => Recompute the root hash

Hash ABC

Hash AB Hash CC

Example: Verify tx, in Hash ABC
* Leafnode: txy
* Merkle path: Hash B (right), Hash CC (right)

Example: Verify txg in Hash ABC
* Leafnode: txp
* Merkle path: Hash A (left), Hash CC (right)

Proof size: log(N) (the depth of the tree)




Merkle Tree

* Quick question: What is the Merkle path of txj

Root: Hash ABCDEFGH

Hash ABCD Hash EFGH

Hash AB Hash CD Hash EF Hash GH

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H
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Transaction Inclusion Proof via Merkle Trees

The client tracks the longest valid
@ chain (the most-work chain), and
m stores all block headers

Light client Full node
(only stores block headers) (store all blocks)




Transaction Inclusion Proof via Merkle Trees

= =

Light client Full node
(only stores block headers) (store all blocks)

The block i’s header already
included the
but no transactions




Transaction Inclusion Proof via Merkle Trees

= =

Light client Full node
(only stores block headers) (store all blocks)

Merkle_root_hash
of block i




Transaction Inclusion Proof via Merkle Trees

2 S

Light client Full node
(only stores block headers) (store all blocks)
Request:
Prove that a transaction tx
is included in block i

Merkle_root_hash
of block i




Transaction Inclusion Proof via Merkle Trees

2 S

Light client Full node

(only stores block headers) (store all blocks)
Request:
Prove that a transaction tx
isincluded in block i

Merkle_root_hash
of block i

v

(1) Find tx
(2) Reconstruct the Merkle path of tx




Transaction Inclusion Proof via Merkle Trees

2 S

Light client Full node

(only stores block headers) (store all blocks)
Request:
Prove that a transaction tx
isincluded in block i

Merkle_root_hash
of block i

v

(1) Find tx
(2) Reconstruct the Merkle path of tx
tx, the Merkle path of tx

A




Transaction Inclusion Proof via Merkle Trees

2 S

Light client Full node

(only stores block headers) (store all blocks)
Request:
Prove that a transaction tx
isincluded in block i

Merkle_root_hash
of block i

v

(1) Find tx
(2) Reconstruct the Merkle path of tx
tx, the Merkle path of tx

Recompute the root hash,and *
compare with the Merkle root _hash
stored in the local block header




Summary of Hash Functions in Blockchain

* Chain all blocks together via hash functions
* prev_hash field in the block header
* Preserve the order
* Provide compact digests for each block

* Merkle tree:
* Merkle_root field in the block header
* Generate compact commitment of all transactions
* Enable Merkle proofs for proving transaction inclusion (not full validity)

* Other parts involving hash functions but beyond today’s scope:

* Proof-of-Work mining: Mine a nonce such that H(block header) < Target > broadcast - others
verify - chain extends - miner earns reward...

* |dentifiers, ...
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Authorizing Transactions in Bitcoin

In Bitcoin, users sign their transaction via ECDSA

The balance of a user is maintained via the UTXO model
* Roughly, coins are stored as Unspent Transaction Outputs (UTXOs)
* Balance(user) = sum of values of UTXOs that can be spent by their key(s)
Conceptually, a Bitcoin transaction includes
* Version
* |nputs (includes unlocking data, e.g., the owner’s signatures of all UTXOs with their previous lock_script)

* Outputs (includes locking data, e.g., new lock_script and the new owner’s address pk_hash)
* Locktime

To spend coins, a transaction

* consumes some existing UTXOs as inputs (references to previous outputs)
* creates new UTXOs as outputs (recipient + change)

UNIKASSEL
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Authorizing Transactions in Bitcoin

)
BN

(pk, sk)

(1) Collect all UTXOs that he wants to spend

These UTXOs includes their references and previous lock_script (e.g., scriptPubKey)
(2) Sign transaction digest of each UTXO: ¢ = ECDSA. Sign(sk, [transaction digest]|)
(3) Include all g in the new UTXO’s input
(4) Create the output of the new UTXO: New lock_script (recipient, change, ...
(5) Broadcast transaction




Further Topics

Transaction Malleability & SegWit

Proof-of-Work & Difficulty Adjustment

Consensus Mechanism

Smart Contract
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