Cryptography Engineering

* Lecture 12 (Jan 27, 2026)

* Today’s notes:
* Case study: Hash functions and Digital signature in Blockchain

Previous Topics

 Symmetric primitives: Hash functions, HKDF, HMAC, AEAD, ...

* Diffie-Hellman key exchange (DHKE), digital signature

e Certificate, TLS handshake

* Fujisaki-Okamoto Transform, CCA security

* Key encapsulation mechanism(KEM), post-quantum TLS (PQ-TLS), KEM-TLS
* Case study: X3DH + Double Ratchet => Secure messaging

* Password authentication, password storage (hashed + salted password)
 Password over TLS, SCRAM

* OPAQUE: Oblivious PRF + 3DH, against pre-computation attack

NI KASSEL
E

U
\"/ RSITAT

Today’s Contents

 Hash & Signature in blockchains:
* Brief background: public authenticated ledger and blockchain
* Hash functions: Hash-linked blocks
* Merkle tree: Commitment, inclusion proofs
» ECDSA: Authorizing transaction

NI KASSEL
E

U
\"/ RSITAT

Trusted Ledger

)
BN

“Bob pays 30€ to Alice”

Trusted Ledger

@ “Bob pays 30€ to Alice”

~
~
~ ’
~ s’
~ ’
~ ’
~ td
~ td
~ s’
~ ’
~ ’
~ td
~ ’
~ td
~ ’
~ td
~ ’
~ ’
~ ’
~ td
~ ’
~ s’
~ 4
S 7
~ 7
’

Some trusted bank

Trusted Ledger

\\
\\
~,

“Bob pays 30€ to Alice”

~,
~,
~,
~
~,
~,
~,
~,
~
~,
~
~,
~,
~
~,
~
~,
\\
~

Some trusted bank

v

,/
’
,/
td

Add the following history into

its Internal ledger:
(1) Bob spends 30€
(2) Alice receives 30€

(3) Time, Date, ...

Trusted Ledger

S N
e 8

Some trusted bank

* Centralized trusted ledger
* The ledger (e.g., history of transactions) is maintained by some authority
* Centralized system

Trusted Ledger

> N
° i 2

Some trusted bank

* Centralized trusted ledger
* The ledger (e.g., history of transactions) is maintained by some authority
* Centralized system

 Efficient: Fast confirmation
l‘ Simplicity and strong consistency

Cost-effective in many settings

NI KASSEL
E

U
\"/ RSITAT

Trusted Ledger

D
BN

* Centralized trusted ledger

AN

P
Some trusted bank

* The ledger (e.g., history of transactions) is maintained by some authority

* Centralized system

|Q{

Require trusted parties
Single point of trust/failure
Limited transparency / verifiability

Potential censorship & Insider attacks

NI KASSEL
E

U
\"/ RSITAT

Decentralized public authenticated ledger

 Can we maintain a ledger without trusting a single authority, while still keeping it
consistent and verifiable?

* Goal: Decentralized ledger that achieves
* No single trusted maintainer
* Public and transparent (e.g., anyone can verify)
* Authenticated (e.g., transaction history is tamper-evident)

Decentralized public authenticated ledger

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin(@gmx.com
www.bitcoin.org

Decentralized public authenticated ledger

* Use blockchain to build decentralized public authenticated ledger

* A blockchain system includes many components:
* E.g., Consensus mechanisms, peer-to-peer networking, smart contracts...

* |In this lecture, we focus on how to:
* Use hash functions to build blocks and link them into a chain
* Use Merkle trees to achieve tamper-evident commitment to transaction history
* Use signatures to authorize transactions and prove ownership
* Make them publicly verifiable

U
\"/

N
E

I KASSEL
RSITAT

Hash Chain

e et H be a hash function

* Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

Block 1 Block 2 Block 3 Block 4

Hash Chain

e et H be a hash function

* Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

Block 1 Block 2 Block 3 Block 4

e Triviabsotution-S Wstoel Lthe: I

Hash Chain

e et H be a hash function

* Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

Block 1 Block 2 Block 3 Block 4

e Triviabsotution-S Wstoel Lthe: I

* Use hash function:

Digest = H(H(H(H(,Block 1), Block 2), Block 3), Block 4)

Hash Chain

e et H be a hash function

* Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

Block 3 Block 4
(1) Header 3 (1) Header 4

Block 2
(1) Header 2

Block 1
(1) Header 1

(2) Data 3 (2) Data 4

(2) Data 1 (2) Data 2

e Triviabsotution-S Wstoel Lthe: I

* Use hash function (to hash the short headers):

Digest = H(H(H(H(Header 1), Header 2), Header 3), Header 4)

The Chain Structure in Bitcoin

Genesis * Anchor of the chain, no previous hashes
block « Hardcoded into Bitcoin applications
* Publicly known

GetHash() = BxE000000000810d6689cB35ae165831e034FF763aed6a2a6c172b3f1b6daBce2nf

hashMerkleRoot = Bx4aSeledbaab89f3a32518a88c31bc87618f76673e2cci7ab2127b7afdeda3zb

txNew.vin[8].scriptSig 4126604799 4 Bx736BOE616220726F0602874750F6C60616228646E6F63657320066F286B6E697262286E6F28726F6CEC65030E61684328303830322F6E614A2F333B2873656D605428656854
txNew.vout[8].nValue 58800000800

txNew.vout[8].scriptPubKey 8x5F1DF16B2B784CEALY BDBEBBAF74D385CDE12C11EESB455F3CA3BEFACIFECFO409B6DEG11FEAEBE2 TOAGRO30EG28ABDELC10EBT3871ABF16719274855FEBBFDBAGTE4 OP_CHECKSIG
block.nVersion = 1

block.nTime = 1231886585
block.nBits = Bxldeeffff
block.nNonce = 2883236893

CBlock(hash=000ee8e08819d6, ver=1, hashPrevBlock=0p0oeooeaseseee, hashMerkleRoot=4aSele, nTime=1231886585, nBits=1deeffff, nNonce=2883236893, vix=1)
CTransaction(hash=4aSele, ver=1, vin.size=1, vout.size=1, nLockTime=8)
CTxIn(COutPoint(@ees8sd, -1), coinbase e4ffffeeldel1p4455468652854696d65732030833214a61622132383839204368616263656c6C6T72206162206272696e6b286T66207365636F664286261696C6F75742066617220626166b73)
CTx0ut(nValue=56.808888008, scriptPubKey=8x5F1DF16B2B784C8A578DEE)
vMerkleTree: 4aSele

The Chain Structure in Bitcoin

Block O
(Genesis block)

Block 1:
Prev_hash = H(Block 0 Header)
Merkle_root =... (Explained later)

Other header fields...

Block body (Transactions)...

The header of a block includes:
* Prev_hash and Merkle_root,
* nVersion, nTime, nBits, and nNonce

The block body records the transactions included
in the block (and related metadata).

The Chain Structure in Bitcoin

Block O
Prev_hash

Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash

Other header fields
Block body

The Chain Structure in Bitcoin

Block O Block 1 Block 2 Block 3
Prev_hash *. Prev_hash *. Prev_hash Prev_hash

Other header fields Other header fields Other header fields Other header fields

Block body Block body Block body Block body

* “Chain” all blocks in order using hash function / pointer, i.e., prev_hash = H(prev_header)

The Chain Structure in Bitcoin

Block O Block 1 Block 2 Block 3
Prev_hash *. Prev_hash *. Prev_hash Prev_hash

Other header fields Other header fields Other header fields Other header fields

Block body Block body Block body Block body

* “Chain” all blocks in order using hash function / pointer, i.e., prev_hash = H(prev_header)
* What if a blockis tampered?

The Chain Structure in Bitcoin

Block O
Prev_hash
Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
(Tampered)

Block 3
Prev_hash

Other header fields
Block body

The Chain Structure in Bitcoin

Block O Block 1 Block 2
Prev_hash Prev_hash Prev_hash

Block 3
Prev_hash

Other header fields Other header fields Other header fields
Block body Block body Block body

Other header fields
Block body

* |f the header of block 2 was modified, then we can easily detect it via Block 3’s prev_hash.

The Chain Structure in Bitcoin

Block O Block 1 Block 2
Prev_hash Prev_hash Prev_hash

Block 3
Prev_hash

Other header fields Other header fields Other header fields
Block body Block body Block body

Other header fields
Block body

* |f the header of block 2 was modified, then we can easily detect it via Block 3’s prev_hash.

* But what if only the block body of Block 2 was modified (e.g., inserting or changing
transactions)?

The Block Structure in Bitcoin

Conceptually, a Bitcoin block body is an ordered list of transactions:
Block body = (txq, tx,, txs, ..., tx,)

Elmeld * Eachtransactionis a serialized objects (i.e., with specific data
Prev_hash . : :
structure like (inputs, outputs, scripts)...)

* The order matters
e How can we detect if some transactions are not valid?

Other header fields
Block body

The Block Structure in Bitcoin

Block i
Prev_hash

Other header fields
Block body

Conceptually, a Bitcoin block body is an ordered list of transactions:

Block body = (txq, tx,, txs, ..., tx,)

* Each transactionis a serialized objects (i.e., with specific data
structure like (inputs, outputs, scripts)...)

* The order matters
e How can we detect if some transactions are not valid?

* A straight-forward solution: Compute
tx_commitment = H(txq, tx,, ..., tx,,)

and store the hash in the block header.

The Block Structure in Bitcoin

Block i
Prev_hash

Other header fields
Block body

* How can we detect if some transactions are not valid?
Block body = (txq, tx,, txs3, ..., txy)

* A straight-forward solution: Compute
tx_commitment = H(txq, txy, ..., txy,)
and store the hash in the block header.

* Drawbacks: To verify, we must download the whole block to get all transactions
* Not friendly to light clients
* Not friendly to limited bandwidth or high latency network
* No efficient way to prove inclusion of a single transaction

The Block Structure in Bitcoin

How can we detect if some transactions are not valid?
Block body = (txq, tx,, txs3, ..., txy)

A straight-forward solution: Compute

Block i
Prev_hash

tx_commitment = H(txq, txy, ..., txy,)

Other header fields and store the hash in the block header.
Block body

Drawbacks: To verify, we must download the whole block to get all transactions
* Not friendly to light clients
* Not friendly to limited bandwidth or high latency network
* No efficient way to prove inclusion of a single transaction

In Bitcoin, we use Merkle tree to provide a compact and efficient commitment

ASSE

U I K L
\"/ RSITAT

Merkle Tree

 Example: Generate a commitment of 8 transactions A,B,C,D,E,F,G, and H.

Merkle Tree

 Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A = H(transactions A)

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Merkle Tree

 Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash AB = H(Hash A || Hash B)

Hash AB Hash CD Hash EF Hash GH

Merkle Tree

 Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash ABCD = H(Hash AB || HashCD)

Hash ABCD Hash EFGH

Hash AB Hash CD Hash EF Hash GH

Merkle Tree

 Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.
Merkle_root = H(Hash ABCD || HashEFGH)

Root: Hash ABCDEFGH

Hash ABCD Hash EFGH

Hash AB Hash CD Hash EF Hash GH

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

ASSE

U I K L
\") RSITAT

Merkle Tree

* Merkle tree ensures that all leaf nodes (transactions) contribute to the root hash
* One leaf node modified => Different root hash

* How do we handle odd nhumbers of nodes?
* Duplicate the last leaf (which still preserves the property that every leaf influences the root hash)

Hash ABC

Hash AB Hash CC

Merkle Tree

* How can we verify a leaf is included in the committed set (i.e., included in the tree)?

Hash ABC

Hash AB Hash CC

Merkle Tree

How can we verify a leaf is included in the committed set (i.e., included in the tree)?

Hash ABC

Better solution: Merkle proof Hash AB Hash CC
Example: Verify tx, in Hash ABC

Trivial inefficient solution: Request all
transactions and re-construct the tree

Merkle Tree

* Merkle proof: Leaf node + Merkle path => Recompute the root hash

* Example: Verify tx, in Hash ABC
* Leafnode: txy
* Merkle path: Hash B, Hash CC

Hash ABC

Hash AB Hash CC

Merkle Tree

* Merkle proof: Leaf node + Merkle path => Recompute the root hash

Hash ABC

Hash AB Hash CC

* Example: Verify tx, in Hash ABC
* Leafnode: txy
* Merkle path: Hash B (right), Hash CC (right)

* Example: Verify txp in Hash ABC

* Leafnode: txp
* Merkle path: Hash A (left), Hash CC (right)

Merkle Tree

Merkle proof: Leaf node + Merkle path => Recompute the root hash

Hash ABC

Hash AB Hash CC

Example: Verify tx, in Hash ABC
* Leafnode: txy
* Merkle path: Hash B (right), Hash CC (right)

Example: Verify txg in Hash ABC
* Leafnode: txp
* Merkle path: Hash A (left), Hash CC (right)

Proof size: log(N) (the depth of the tree)

Merkle Tree

* Quick question: What is the Merkle path of txj

Root: Hash ABCDEFGH

Hash ABCD Hash EFGH

Hash AB Hash CD Hash EF Hash GH

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

ASSE

U I K L
\") RSITAT

Transaction Inclusion Proof via Merkle Trees

The client tracks the longest valid
@ chain (the most-work chain), and
m stores all block headers

Light client Full node
(only stores block headers) (store all blocks)

Transaction Inclusion Proof via Merkle Trees

= =

Light client Full node
(only stores block headers) (store all blocks)

The block i’s header already
included the
but no transactions

Transaction Inclusion Proof via Merkle Trees

= =

Light client Full node
(only stores block headers) (store all blocks)

Merkle_root_hash
of block i

Transaction Inclusion Proof via Merkle Trees

2 S

Light client Full node
(only stores block headers) (store all blocks)
Request:
Prove that a transaction tx
is included in block i

Merkle_root_hash
of block i

Transaction Inclusion Proof via Merkle Trees

2 S

Light client Full node

(only stores block headers) (store all blocks)
Request:
Prove that a transaction tx
isincluded in block i

Merkle_root_hash
of block i

v

(1) Find tx
(2) Reconstruct the Merkle path of tx

Transaction Inclusion Proof via Merkle Trees

2 S

Light client Full node

(only stores block headers) (store all blocks)
Request:
Prove that a transaction tx
isincluded in block i

Merkle_root_hash
of block i

v

(1) Find tx
(2) Reconstruct the Merkle path of tx
tx, the Merkle path of tx

A

Transaction Inclusion Proof via Merkle Trees

2 S

Light client Full node

(only stores block headers) (store all blocks)
Request:
Prove that a transaction tx
isincluded in block i

Merkle_root_hash
of block i

v

(1) Find tx
(2) Reconstruct the Merkle path of tx
tx, the Merkle path of tx

Recompute the root hash,and *
compare with the Merkle root _hash
stored in the local block header

Summary of Hash Functions in Blockchain

* Chain all blocks together via hash functions
* prev_hash field in the block header
* Preserve the order
* Provide compact digests for each block

* Merkle tree:
* Merkle_root field in the block header
* Generate compact commitment of all transactions
* Enable Merkle proofs for proving transaction inclusion (not full validity)

* Other parts involving hash functions but beyond today’s scope:

* Proof-of-Work mining: Mine a nonce such that H(block header) < Target > broadcast - others
verify - chain extends - miner earns reward...

* |dentifiers, ...

ASSE

U I K L
\"/ RSITAT

Authorizing Transactions in Bitcoin

In Bitcoin, users sign their transaction via ECDSA

The balance of a user is maintained via the UTXO model
* Roughly, coins are stored as Unspent Transaction Outputs (UTXOs)
* Balance(user) = sum of values of UTXOs that can be spent by their key(s)
Conceptually, a Bitcoin transaction includes
* Version
* |nputs (includes unlocking data, e.g., the owner’s signatures of all UTXOs with their previous lock_script)

* Outputs (includes locking data, e.g., new lock_script and the new owner’s address pk_hash)
* Locktime

To spend coins, a transaction

* consumes some existing UTXOs as inputs (references to previous outputs)
* creates new UTXOs as outputs (recipient + change)

UNIKASSEL
VERSITAT

Authorizing Transactions in Bitcoin

)
BN

(pk, sk)

(1) Collect all UTXOs that he wants to spend

These UTXOs includes their references and previous lock_script (e.g., scriptPubKey)
(2) Sign transaction digest of each UTXO: ¢ = ECDSA. Sign(sk, [transaction digest]|)
(3) Include all g in the new UTXO’s input
(4) Create the output of the new UTXO: New lock_script (recipient, change, ...
(5) Broadcast transaction

Further Topics

Transaction Malleability & SegWit

Proof-of-Work & Difficulty Adjustment

Consensus Mechanism

Smart Contract

	Slide 1: Cryptography Engineering
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

