
Cryptography Engineering 
• Lecture 12 (Jan 27, 2026)
• Today’s notes:

• Case study: Hash functions and Digital signature in Blockchain



Previous Topics

• Symmetric primitives: Hash functions, HKDF, HMAC, AEAD, …
• Diffie-Hellman key exchange (DHKE), digital signature
• Certificate, TLS handshake
• Fujisaki-Okamoto Transform, CCA security
• Key encapsulation mechanism(KEM), post-quantum TLS (PQ-TLS), KEM-TLS
• Case study: X3DH + Double Ratchet => Secure messaging
• Password authentication, password storage (hashed + salted password)
• Password over TLS, SCRAM
• OPAQUE: Oblivious PRF + 3DH, against pre-computation attack

 



Today’s Contents

• Hash & Signature in blockchains:
• Brief background: public authenticated ledger and blockchain
• Hash functions: Hash-linked blocks
• Merkle tree: Commitment, inclusion proofs
• ECDSA: Authorizing transaction



“Bob pays 30€ to Alice”

Trusted Ledger
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“Bob pays 30€ to Alice”

Some trusted bank

Add the following history into 
its Internal ledger:

(1) Bob spends 30€
(2) Alice receives 30€
(3) Time, Date, …

Trusted Ledger
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• Centralized trusted ledger
• The ledger (e.g., history of transactions) is maintained by some authority
• Centralized system
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• Centralized trusted ledger
• The ledger (e.g., history of transactions) is maintained by some authority
• Centralized system

Some trusted bank

Trusted Ledger

• Efficient: Fast confirmation

• Simplicity and strong consistency 

• Cost-effective in many settings

• Require trusted parties

• Single point of trust/failure

• Limited transparency / verifiability

• Potential censorship & Insider attacks



Decentralized public authenticated ledger

• Can we maintain a ledger without trusting a single authority, while still keeping it 
consistent and verifiable?

• Goal: Decentralized ledger that achieves
• No single trusted maintainer
• Public and transparent (e.g., anyone can verify)
• Authenticated (e.g., transaction history is tamper-evident)
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Decentralized public authenticated ledger

• Use blockchain to build decentralized public authenticated ledger

• A blockchain system includes many components:
• E.g., Consensus mechanisms, peer-to-peer networking, smart contracts...

• In this lecture, we focus on how to:
• Use hash functions to build blocks and link them into a chain
• Use Merkle trees to achieve tamper-evident commitment to transaction history 
• Use signatures to authorize transactions and prove ownership
• Make them publicly verifiable



Hash Chain

• Let 𝐻 be a hash function

• Motivated question: Suppose that we have many data blocks, how can we construct a compact 
digest to record their order?

Block 2 Block 3 Block 4Block 1
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Hash Chain

• Let 𝐻 be a hash function

• Motivated question: Suppose that we have many data blocks, how can we construct a compact 
digest to record their order?

• Trivial solution: Store all blocks and their order
• Use hash function: 
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Digest = 𝐻 𝐻 𝐻 𝐻 prefix, Block 1 , Block 2 , Block 3 , Block 4



Hash Chain

• Let 𝐻 be a hash function

• Motivated question: Suppose that we have many data blocks, how can we construct a compact 
digest to record their order?

• Trivial solution: Store all blocks and their order
• Use hash function (to hash the short headers): 

Block 1
(1) Header 1
(2) Data 1
…

Block 2
(1) Header 2
(2) Data 2
…

Block 3
(1) Header 3
(2) Data 3
…

Block 4
(1) Header 4
(2) Data 4
…

Digest = 𝐻 𝐻 𝐻 𝐻 prefix, Header 1 , Header 2 , Header 3 , Header 4



The Chain Structure in Bitcoin

Genesis 
block

• Anchor of the chain, no previous hashes
• Hardcoded into Bitcoin applications
• Publicly known

(Image from Bitcoin Wiki)



The Chain Structure in Bitcoin

Block 0
(Genesis block)

Block 1:
Prev_hash = 𝑯 𝐁𝐥𝐨𝐜𝐤 𝟎 𝐇𝐞𝐚𝐝𝐞𝐫
Merkle_root = … (Explained later)
Other header fields…

Block body (Transactions)…

The header of a block includes:
• Prev_hash and Merkle_root,
• nVersion, nTime, nBits, and nNonce

The block body records the transactions included 
in the block (and related metadata).



The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body



The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

• “Chain” all blocks in order using hash function / pointer, i.e., prev_hash = H(prev_header)
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Block body



The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

• “Chain” all blocks in order using hash function / pointer, i.e., prev_hash = H(prev_header)
• What if a block is tampered?

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body
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Block 1
Prev_hash
Other header fields
Block body

Block 2 
(Tampered)

Block 3
Prev_hash
Other header fields
Block body
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Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body

• If the header of block 2 was modified, then we can easily detect it via Block 3’s prev_hash.



The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body

• If the header of block 2 was modified, then we can easily detect it via Block 3’s prev_hash.
• But what if only the block body of Block 2 was modified (e.g., inserting or changing 

transactions)?



The Block Structure in Bitcoin

Block i
Prev_hash
Other header fields
Block body

Conceptually, a Bitcoin block body is an ordered list of transactions:

Block body = (𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥3, … , 𝑡𝑥𝑛)

• Each transaction is a serialized objects (i.e., with specific data 
structure like (inputs, outputs, scripts)…)

• The order matters
• How can we detect if some transactions are not valid?
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and store the hash in the block header. 
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• Drawbacks: To verify, we must download the whole block to get all transactions
• Not friendly to light clients
• Not friendly to limited bandwidth or high latency network
• No efficient way to prove inclusion of a single transaction



The Block Structure in Bitcoin

Block i
Prev_hash
Other header fields
Block body

• How can we detect if some transactions are not valid?
Block body = (𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥3, … , 𝑡𝑥𝑛)

• A straight-forward solution: Compute
tx_commitment = 𝐻 𝑡𝑥1, 𝑡𝑥2, … , 𝑡𝑥𝑛

and store the hash in the block header.

• Drawbacks: To verify, we must download the whole block to get all transactions
• Not friendly to light clients
• Not friendly to limited bandwidth or high latency network
• No efficient way to prove inclusion of a single transaction

• In Bitcoin, we use Merkle tree to provide a compact and efficient commitment 



Merkle Tree

• Example: Generate a commitment of 8 transactions A,B,C,D,E,F,G, and H.

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻



Merkle Tree

• Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Hash A = 𝐻(transactions 𝐴)

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻



Merkle Tree

• Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.
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Hash AB = 𝐻(Hash A || Hash 𝐵)
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Merkle Tree

• Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Hash ABCD = 𝐻(Hash AB || HashCD)

Hash AB Hash CD Hash EF Hash GH

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Hash ABCD Hash EFGH



Merkle Tree

• Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Merkle_root = 𝐻(Hash ABCD || HashEFGH)

Hash AB Hash CD Hash EF Hash GH

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Hash ABCD Hash EFGH

Root: Hash ABCDEFGH



Merkle Tree

• Merkle tree ensures that all leaf nodes (transactions) contribute to the root hash
• One leaf node modified => Different root hash 

• How do we handle odd numbers of nodes?
• Duplicate the last leaf (which still preserves the property that every leaf influences the root hash)

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC



Merkle Tree

• How can we verify a leaf is included in the committed set (i.e., included in the tree)?

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC



Merkle Tree

• How can we verify a leaf is included in the committed set (i.e., included in the tree)?

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC• Trivial inefficient solution: Request all 
transactions and re-construct the tree

• Better solution: Merkle proof
• Example: Verify 𝑡𝑥𝐴 in Hash ABC



• Merkle proof: Leaf node + Merkle path => Recompute the root hash

• Example: Verify 𝑡𝑥𝐴 in Hash ABC
• Leaf node: 𝑡𝑥𝐴 
• Merkle path: Hash B, Hash CC

Merkle Tree

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC



• Merkle proof: Leaf node + Merkle path => Recompute the root hash

• Example: Verify 𝑡𝑥𝐴 in Hash ABC
• Leaf node: 𝑡𝑥𝐴 
• Merkle path: Hash B (right), Hash CC (right)

• Example: Verify 𝑡𝑥𝐵 in Hash ABC
• Leaf node: 𝑡𝑥𝐵 
• Merkle path: Hash A (left), Hash CC (right)

Merkle Tree

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC



• Merkle proof: Leaf node + Merkle path => Recompute the root hash

• Example: Verify 𝑡𝑥𝐴 in Hash ABC
• Leaf node: 𝑡𝑥𝐴 
• Merkle path: Hash B (right), Hash CC (right)

• Example: Verify 𝑡𝑥𝐵 in Hash ABC
• Leaf node: 𝑡𝑥𝐵 
• Merkle path: Hash A (left), Hash CC (right)

• Proof size: log 𝑁  (the depth of the tree)

Merkle Tree

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC



Merkle Tree

• Quick question: What is the Merkle path of 𝑡𝑥𝐷

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Hash AB Hash CD Hash EF Hash GH

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Hash ABCD Hash EFGH

Root: Hash ABCDEFGH



Full node
(store all blocks)

Light client
(only stores block headers)

The client tracks the longest valid 
chain (the most-work chain), and 

stores all block headers

Transaction Inclusion Proof via Merkle Trees



Full node
(store all blocks)

Light client
(only stores block headers)

The block i’s header already 
included the Merkle root hash, 

but no transactions

Transaction Inclusion Proof via Merkle Trees



Full node
(store all blocks)

Light client
(only stores block headers)

Merkle_root_hash 
of block 𝑖 

Transaction Inclusion Proof via Merkle Trees



Full node
(store all blocks)

Light client
(only stores block headers)

Merkle_root_hash 
of block 𝑖 

Request: 
Prove that a transaction 𝑡𝑥

is included in block 𝑖 

Transaction Inclusion Proof via Merkle Trees



Full node
(store all blocks)

Light client
(only stores block headers)

Request: 
Prove that a transaction 𝑡𝑥

is included in block 𝑖 

Merkle_root_hash 
of block 𝑖 

(1) Find 𝑡𝑥
(2) Reconstruct the Merkle path of 𝑡𝑥  

Transaction Inclusion Proof via Merkle Trees



Full node
(store all blocks)

Light client
(only stores block headers)

Request: 
Prove that a transaction 𝑡𝑥

is included in block 𝑖 

Merkle_root_hash 
of block 𝑖 

(1) Find 𝑡𝑥
(2) Reconstruct the Merkle path of 𝑡𝑥  

𝑡𝑥, the Merkle path of 𝑡𝑥 

Transaction Inclusion Proof via Merkle Trees



Full node
(store all blocks)

Light client
(only stores block headers)

Request: 
Prove that a transaction 𝑡𝑥

is included in block 𝑖 

Merkle_root_hash 
of block 𝑖 

(1) Find 𝑡𝑥
(2) Reconstruct the Merkle path of 𝑡𝑥  

𝑡𝑥, the Merkle path of 𝑡𝑥 
Recompute the root hash, and 
compare with the Merkle_root_hash 
stored in the local block header

Transaction Inclusion Proof via Merkle Trees



Summary of Hash Functions in Blockchain

• Chain all blocks together via hash functions
• prev_hash field in the block header
• Preserve the order
• Provide compact digests for each block

• Merkle tree:
• Merkle_root field in the block header
• Generate compact commitment of all transactions
• Enable Merkle proofs for proving transaction inclusion (not full validity)

• Other parts involving hash functions but beyond today’s scope:
• Proof-of-Work mining: Mine a nonce such that H(block header) < Target → broadcast → others 

verify → chain extends → miner earns reward…
• Identifiers, …



Authorizing Transactions in Bitcoin

• In Bitcoin, users sign their transaction via ECDSA

• The balance of a user is maintained via the UTXO model
• Roughly, coins are stored as Unspent Transaction Outputs (UTXOs)
• Balance(user) = sum of values of UTXOs that can be spent by their key(s)

• Conceptually, a Bitcoin transaction includes
• Version
• Inputs (includes unlocking data, e.g., the owner’s signatures of all UTXOs with their previous lock_script )
• Outputs (includes locking data, e.g., new lock_script and the new owner’s address pk_hash)
• Locktime

• To spend coins, a transaction
• consumes some existing UTXOs as inputs (references to previous outputs)
• creates new UTXOs as outputs (recipient + change)



Authorizing Transactions in Bitcoin

(1) Collect all UTXOs that he wants to spend
        These UTXOs includes their references and previous lock_script (e.g.,  scriptPubKey)
(2) Sign transaction digest of each UTXO: 𝝈 = 𝐄𝐂𝐃𝐒𝐀. 𝐒𝐢𝐠𝐧 𝒔𝒌, 𝐭𝐫𝐚𝐧𝐬𝐚𝐜𝐭𝐢𝐨𝐧 𝐝𝐢𝐠𝐞𝐬𝐭

(3) Include all 𝜎 in the new UTXO’s input
(4) Create the output of the new UTXO: New lock_script (recipient, change, …
(5) Broadcast transaction

𝑝𝑘, 𝑠𝑘



Further Topics

• Transaction Malleability & SegWit

• Proof-of-Work & Difficulty Adjustment

• Consensus Mechanism

• Smart Contract
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