
Cryptography Engineering
• Lecture 12 (Jan 27, 2026)
• Today’s notes:

• Case study: Hash functions and Digital signature in Blockchain

Previous Topics

• Symmetric primitives: Hash functions, HKDF, HMAC, AEAD, …
• Diffie-Hellman key exchange (DHKE), digital signature
• Certificate, TLS handshake
• Fujisaki-Okamoto Transform, CCA security
• Key encapsulation mechanism(KEM), post-quantum TLS (PQ-TLS), KEM-TLS
• Case study: X3DH + Double Ratchet => Secure messaging
• Password authentication, password storage (hashed + salted password)
• Password over TLS, SCRAM
• OPAQUE: Oblivious PRF + 3DH, against pre-computation attack

Today’s Contents

• Hash & Signature in blockchains:
• Brief background: public authenticated ledger and blockchain
• Hash functions: Hash-linked blocks
• Merkle tree: Commitment, inclusion proofs
• ECDSA: Authorizing transaction

“Bob pays 30€ to Alice”

Trusted Ledger

Trusted Ledger

“Bob pays 30€ to Alice”

Some trusted bank

“Bob pays 30€ to Alice”

Some trusted bank

Add the following history into
its Internal ledger:

(1) Bob spends 30€
(2) Alice receives 30€
(3) Time, Date, …

Trusted Ledger

Some trusted bank

Trusted Ledger

• Centralized trusted ledger
• The ledger (e.g., history of transactions) is maintained by some authority
• Centralized system

Some trusted bank

Trusted Ledger

• Centralized trusted ledger
• The ledger (e.g., history of transactions) is maintained by some authority
• Centralized system

• Efficient: Fast confirmation

• Simplicity and strong consistency

• Cost-effective in many settings

• Centralized trusted ledger
• The ledger (e.g., history of transactions) is maintained by some authority
• Centralized system

Some trusted bank

Trusted Ledger

• Efficient: Fast confirmation

• Simplicity and strong consistency

• Cost-effective in many settings

• Require trusted parties

• Single point of trust/failure

• Limited transparency / verifiability

• Potential censorship & Insider attacks

Decentralized public authenticated ledger

• Can we maintain a ledger without trusting a single authority, while still keeping it
consistent and verifiable?

• Goal: Decentralized ledger that achieves
• No single trusted maintainer
• Public and transparent (e.g., anyone can verify)
• Authenticated (e.g., transaction history is tamper-evident)

Decentralized public authenticated ledger

• Can we maintain a ledger without trusting a single authority, while still keeping it
consistent and verifiable?

• Goal: Decentralized ledger that achieves
• No single trusted maintainer
• Public and transparent (e.g., anyone can verify)
• Authenticated (e.g., transaction history is tamper-evident)

Decentralized public authenticated ledger

• Use blockchain to build decentralized public authenticated ledger

• A blockchain system includes many components:
• E.g., Consensus mechanisms, peer-to-peer networking, smart contracts...

• In this lecture, we focus on how to:
• Use hash functions to build blocks and link them into a chain
• Use Merkle trees to achieve tamper-evident commitment to transaction history
• Use signatures to authorize transactions and prove ownership
• Make them publicly verifiable

Hash Chain

• Let 𝐻 be a hash function

• Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

Block 2 Block 3 Block 4Block 1

Hash Chain

• Let 𝐻 be a hash function

• Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

• Trivial solution: Store all blocks and their order

Block 2 Block 3 Block 4Block 1

Hash Chain

• Let 𝐻 be a hash function

• Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

• Trivial solution: Store all blocks and their order
• Use hash function:

Block 1 Block 2 Block 3 Block 4

Digest = 𝐻 𝐻 𝐻 𝐻 prefix, Block 1 , Block 2 , Block 3 , Block 4

Hash Chain

• Let 𝐻 be a hash function

• Motivated question: Suppose that we have many data blocks, how can we construct a compact
digest to record their order?

• Trivial solution: Store all blocks and their order
• Use hash function (to hash the short headers):

Block 1
(1) Header 1
(2) Data 1
…

Block 2
(1) Header 2
(2) Data 2
…

Block 3
(1) Header 3
(2) Data 3
…

Block 4
(1) Header 4
(2) Data 4
…

Digest = 𝐻 𝐻 𝐻 𝐻 prefix, Header 1 , Header 2 , Header 3 , Header 4

The Chain Structure in Bitcoin

Genesis
block

• Anchor of the chain, no previous hashes
• Hardcoded into Bitcoin applications
• Publicly known

(Image from Bitcoin Wiki)

The Chain Structure in Bitcoin

Block 0
(Genesis block)

Block 1:
Prev_hash = 𝑯 𝐁𝐥𝐨𝐜𝐤 𝟎 𝐇𝐞𝐚𝐝𝐞𝐫
Merkle_root = … (Explained later)
Other header fields…

Block body (Transactions)…

The header of a block includes:
• Prev_hash and Merkle_root,
• nVersion, nTime, nBits, and nNonce

The block body records the transactions included
in the block (and related metadata).

The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body

The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

• “Chain” all blocks in order using hash function / pointer, i.e., prev_hash = H(prev_header)

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body

The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

• “Chain” all blocks in order using hash function / pointer, i.e., prev_hash = H(prev_header)
• What if a block is tampered?

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body

The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
(Tampered)

Block 3
Prev_hash
Other header fields
Block body

The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body

• If the header of block 2 was modified, then we can easily detect it via Block 3’s prev_hash.

The Chain Structure in Bitcoin

Block 0
Prev_hash
Other header fields
Block body

Block 1
Prev_hash
Other header fields
Block body

Block 2
Prev_hash
Other header fields
Block body

Block 3
Prev_hash
Other header fields
Block body

• If the header of block 2 was modified, then we can easily detect it via Block 3’s prev_hash.
• But what if only the block body of Block 2 was modified (e.g., inserting or changing

transactions)?

The Block Structure in Bitcoin

Block i
Prev_hash
Other header fields
Block body

Conceptually, a Bitcoin block body is an ordered list of transactions:

Block body = (𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥3, … , 𝑡𝑥𝑛)

• Each transaction is a serialized objects (i.e., with specific data
structure like (inputs, outputs, scripts)…)

• The order matters
• How can we detect if some transactions are not valid?

The Block Structure in Bitcoin

Block i
Prev_hash
Other header fields
Block body

Conceptually, a Bitcoin block body is an ordered list of transactions:

Block body = (𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥3, … , 𝑡𝑥𝑛)

• Each transaction is a serialized objects (i.e., with specific data
structure like (inputs, outputs, scripts)…)

• The order matters
• How can we detect if some transactions are not valid?

• A straight-forward solution: Compute
tx_commitment = 𝐻 𝑡𝑥1, 𝑡𝑥2, … , 𝑡𝑥𝑛

and store the hash in the block header.

The Block Structure in Bitcoin

Block i
Prev_hash
Other header fields
Block body

• How can we detect if some transactions are not valid?
Block body = (𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥3, … , 𝑡𝑥𝑛)

• A straight-forward solution: Compute
tx_commitment = 𝐻 𝑡𝑥1, 𝑡𝑥2, … , 𝑡𝑥𝑛

and store the hash in the block header.

• Drawbacks: To verify, we must download the whole block to get all transactions
• Not friendly to light clients
• Not friendly to limited bandwidth or high latency network
• No efficient way to prove inclusion of a single transaction

The Block Structure in Bitcoin

Block i
Prev_hash
Other header fields
Block body

• How can we detect if some transactions are not valid?
Block body = (𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥3, … , 𝑡𝑥𝑛)

• A straight-forward solution: Compute
tx_commitment = 𝐻 𝑡𝑥1, 𝑡𝑥2, … , 𝑡𝑥𝑛

and store the hash in the block header.

• Drawbacks: To verify, we must download the whole block to get all transactions
• Not friendly to light clients
• Not friendly to limited bandwidth or high latency network
• No efficient way to prove inclusion of a single transaction

• In Bitcoin, we use Merkle tree to provide a compact and efficient commitment

Merkle Tree

• Example: Generate a commitment of 8 transactions A,B,C,D,E,F,G, and H.

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Merkle Tree

• Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Hash A = 𝐻(transactions 𝐴)

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Merkle Tree

• Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Hash AB = 𝐻(Hash A || Hash 𝐵)

Hash AB Hash CD Hash EF Hash GH

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Merkle Tree

• Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Hash ABCD = 𝐻(Hash AB || HashCD)

Hash AB Hash CD Hash EF Hash GH

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Hash ABCD Hash EFGH

Merkle Tree

• Example: Generate a commitment of 8 data blocks A,B,C,D,E,F,G, and H.

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Merkle_root = 𝐻(Hash ABCD || HashEFGH)

Hash AB Hash CD Hash EF Hash GH

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Hash ABCD Hash EFGH

Root: Hash ABCDEFGH

Merkle Tree

• Merkle tree ensures that all leaf nodes (transactions) contribute to the root hash
• One leaf node modified => Different root hash

• How do we handle odd numbers of nodes?
• Duplicate the last leaf (which still preserves the property that every leaf influences the root hash)

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC

Merkle Tree

• How can we verify a leaf is included in the committed set (i.e., included in the tree)?

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC

Merkle Tree

• How can we verify a leaf is included in the committed set (i.e., included in the tree)?

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC• Trivial inefficient solution: Request all
transactions and re-construct the tree

• Better solution: Merkle proof
• Example: Verify 𝑡𝑥𝐴 in Hash ABC

• Merkle proof: Leaf node + Merkle path => Recompute the root hash

• Example: Verify 𝑡𝑥𝐴 in Hash ABC
• Leaf node: 𝑡𝑥𝐴
• Merkle path: Hash B, Hash CC

Merkle Tree

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC

• Merkle proof: Leaf node + Merkle path => Recompute the root hash

• Example: Verify 𝑡𝑥𝐴 in Hash ABC
• Leaf node: 𝑡𝑥𝐴
• Merkle path: Hash B (right), Hash CC (right)

• Example: Verify 𝑡𝑥𝐵 in Hash ABC
• Leaf node: 𝑡𝑥𝐵
• Merkle path: Hash A (left), Hash CC (right)

Merkle Tree

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC

• Merkle proof: Leaf node + Merkle path => Recompute the root hash

• Example: Verify 𝑡𝑥𝐴 in Hash ABC
• Leaf node: 𝑡𝑥𝐴
• Merkle path: Hash B (right), Hash CC (right)

• Example: Verify 𝑡𝑥𝐵 in Hash ABC
• Leaf node: 𝑡𝑥𝐵
• Merkle path: Hash A (left), Hash CC (right)

• Proof size: log 𝑁 (the depth of the tree)

Merkle Tree

Hash A Hash B Hash C Hash C

Hash AB Hash CC

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶

Hash ABC

Merkle Tree

• Quick question: What is the Merkle path of 𝑡𝑥𝐷

Hash A Hash B Hash C Hash D Hash E Hash F Hash G Hash H

Hash AB Hash CD Hash EF Hash GH

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷 𝑡𝑥𝐸 𝑡𝑥𝐹 𝑡𝑥𝐺 𝑡𝑥𝐻

Hash ABCD Hash EFGH

Root: Hash ABCDEFGH

Full node
(store all blocks)

Light client
(only stores block headers)

The client tracks the longest valid
chain (the most-work chain), and

stores all block headers

Transaction Inclusion Proof via Merkle Trees

Full node
(store all blocks)

Light client
(only stores block headers)

The block i’s header already
included the Merkle root hash,

but no transactions

Transaction Inclusion Proof via Merkle Trees

Full node
(store all blocks)

Light client
(only stores block headers)

Merkle_root_hash
of block 𝑖

Transaction Inclusion Proof via Merkle Trees

Full node
(store all blocks)

Light client
(only stores block headers)

Merkle_root_hash
of block 𝑖

Request:
Prove that a transaction 𝑡𝑥

is included in block 𝑖

Transaction Inclusion Proof via Merkle Trees

Full node
(store all blocks)

Light client
(only stores block headers)

Request:
Prove that a transaction 𝑡𝑥

is included in block 𝑖

Merkle_root_hash
of block 𝑖

(1) Find 𝑡𝑥
(2) Reconstruct the Merkle path of 𝑡𝑥

Transaction Inclusion Proof via Merkle Trees

Full node
(store all blocks)

Light client
(only stores block headers)

Request:
Prove that a transaction 𝑡𝑥

is included in block 𝑖

Merkle_root_hash
of block 𝑖

(1) Find 𝑡𝑥
(2) Reconstruct the Merkle path of 𝑡𝑥

𝑡𝑥, the Merkle path of 𝑡𝑥

Transaction Inclusion Proof via Merkle Trees

Full node
(store all blocks)

Light client
(only stores block headers)

Request:
Prove that a transaction 𝑡𝑥

is included in block 𝑖

Merkle_root_hash
of block 𝑖

(1) Find 𝑡𝑥
(2) Reconstruct the Merkle path of 𝑡𝑥

𝑡𝑥, the Merkle path of 𝑡𝑥
Recompute the root hash, and
compare with the Merkle_root_hash
stored in the local block header

Transaction Inclusion Proof via Merkle Trees

Summary of Hash Functions in Blockchain

• Chain all blocks together via hash functions
• prev_hash field in the block header
• Preserve the order
• Provide compact digests for each block

• Merkle tree:
• Merkle_root field in the block header
• Generate compact commitment of all transactions
• Enable Merkle proofs for proving transaction inclusion (not full validity)

• Other parts involving hash functions but beyond today’s scope:
• Proof-of-Work mining: Mine a nonce such that H(block header) < Target → broadcast → others

verify → chain extends → miner earns reward…
• Identifiers, …

Authorizing Transactions in Bitcoin

• In Bitcoin, users sign their transaction via ECDSA

• The balance of a user is maintained via the UTXO model
• Roughly, coins are stored as Unspent Transaction Outputs (UTXOs)
• Balance(user) = sum of values of UTXOs that can be spent by their key(s)

• Conceptually, a Bitcoin transaction includes
• Version
• Inputs (includes unlocking data, e.g., the owner’s signatures of all UTXOs with their previous lock_script)
• Outputs (includes locking data, e.g., new lock_script and the new owner’s address pk_hash)
• Locktime

• To spend coins, a transaction
• consumes some existing UTXOs as inputs (references to previous outputs)
• creates new UTXOs as outputs (recipient + change)

Authorizing Transactions in Bitcoin

(1) Collect all UTXOs that he wants to spend
 These UTXOs includes their references and previous lock_script (e.g., scriptPubKey)
(2) Sign transaction digest of each UTXO: 𝝈 = 𝐄𝐂𝐃𝐒𝐀. 𝐒𝐢𝐠𝐧 𝒔𝒌, 𝐭𝐫𝐚𝐧𝐬𝐚𝐜𝐭𝐢𝐨𝐧 𝐝𝐢𝐠𝐞𝐬𝐭

(3) Include all 𝜎 in the new UTXO’s input
(4) Create the output of the new UTXO: New lock_script (recipient, change, …
(5) Broadcast transaction

𝑝𝑘, 𝑠𝑘

Further Topics

• Transaction Malleability & SegWit

• Proof-of-Work & Difficulty Adjustment

• Consensus Mechanism

• Smart Contract

	Slide 1: Cryptography Engineering
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

