Cryptography Engineering

* Lecture 13 (Feb 04, 2026)

* Today’s notes:
 Some attacks on Cryptosystems (and how to prevent them)
* Toward Post-Quantum Cryptography

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.
* Example: DHKE

@ (G.9,9):)
m A g-order group G with a generator g m

—_ X
X<—$Zq X_g N y<—$Zq

Y =g7

A

Kalice = Y* Kpop = XY

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.
* Example: DHKE

Q (G, g,9):

m A g-order group @ with a generator g m The security holds if the protocol
runs on specific groups

— X
X<—$Zq X_g N y<—$Zq

What if we use an element

Y =g7 outside the group G?

A

Kalice =Y”* Kgop = X7

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.

* Example: DHKE Curve1174

251-bit prime field Weierstrass curve.

((G], g’ CI): Curve from
A g-order group @ with a generator g

v¥=a®+tax+b

Parameters

G can be a subgroup of
another group G’
Co-factor: |G'| /|G| (the h

Name Value

ex7 iz
Ox486BE25B34C8080922B969257EER54CA0AF914A29067A5560BBIAEEOBCE7AGD
OXE347A25BF875DD2F1F12D8A10334D417CC15E77893A99FABF278CAS63072E6
(Ox3BE821D63D2CD5AFEQS04FA52E5CFA7A60A10446928CEAECFDS294F80BA5051 ,
OX66FEAE7B8B6FE152F743393029A61BFB839747C8FBOOF7B27A6841C07532A0)
OX1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF77965CADFD307348944D45FD166C971
ox04

value on the RHS figure)

Source: https://neuromancer.sk/std/other/Curve1174

NI KASSEL
E

U
\"/ RSITAT

https://neuromancer.sk/std/other/Curve1174

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.

* Example: DHKE

(@ 9,9):
A g-order group @ with a generator g

)
BN

v

G can be a subgroup of
another group G’
Co-factor: |G'|/|G]| (the h

value on the RHS figure)
Use the co-factor to check
group membership

Check X" = 1?

// 1 is the identity group element
If so, reject

else:

Y <3 Lg

Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

@ h(pw)% € G
m) h(pw)a-salt =

(GcG',g,q9,h=2):
A g-order group G with a generator g,
and |G'|/|G| =h

Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

XeQ
5 Xsalt = (G’

Find an element X s.t.
X’s orderis 2

(GcG',g,q9,h=2):
A g-order group G with a generator g,
and |G'|/|G| =h

Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

(Gc G',g,q9,h=2):
A g-order group G with a generator g,
and |G'|/|G| =h

Find an element X s.t.
X’s orderis 2

Little Algebra:
If X’s order is 2, then X" = X (" m0d2) =5 We can determine the parity

of the salt: salt is an odd/even number if XSalit = X

Attacks using Invalid Inputs

* Other Example:
* |nvalid Curve Attacks (e.g. ECDSA): Using insecure curves.
* Invalid public keys

* Lessons: Follow the standards(/specifications/...), and keep updating with them...

Downgrade Attacks

* Exploit vulnerabilities in compatibility or protocol negotiation to downgrade cryptographic
protocols to weaker or obsolete versions.

* Example: TLS ciphercuite negotiation
« TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secure)
e TLS_RSA_WITH_RC4_128_SHA (no forward secrecy)

* Lessons: Use the latest protocol version (such as TLS 1.3), disable insecure or outdated
protocols/suites on both sides.

NI KASSEL
E

U
\"/ RSITAT

More Examples about Reuse

* Previous Example: Randomness Reuse in the DSA signature => Recovery of secret key
* Why shouldn’t we reuse randomness?

» An informal principle: Security of cryptosystem comes from the secret key and the randomness

» Secret key: High entropic, the “source” of security, ...
» Randomness/nonce/salt: Independency when using the same key, Freshness, ...

NI KASSEL
E

U
\"/ RSITAT

More Examples about Reuse

 Example: Reuse randomness in the Hashed ElGamal Encryption

ElGamalEnc(public_key = g*, plaintext = m)

/1 (G, g,q): A g-order group G with a generator g

1 r <3 Zq
2. co=9"
3 ¢cg=H@")dm

4.

Return (cq, ¢1)

D
BN

Encrypt m and m’ using
the same randomness

gr’H(gxr) @ m

g H@g")dm

\ 4

v

More Examples about Reuse

 Example: Reuse randomness in the Hashed ElGamal Encryption

ElGamalEnc(public_key = g*, plaintext = m)
/1 (G, g,q): A g-order group G with a generator g
1 r <3 Zq
2. ¢cp=g9"

3 ¢cg=H@")dm
4. Return (cg,cq)

-, g H(@G")dm
) > m'@m
g H(@*") @m'
Encrypt m and m’ using >
the same randomness
UNIKASSEL
VERSITAT

More Examples about Reuse

 Examples: Reuse salt in OPAQUE
* Suppose that Alice’s password is pw,, Bob’s password is pwg, and the password files stored in the
server are:

Username: Bob Username: Alice
salt: r salt: T
enc_AKE_keys: AEAD;,,_(...) enc_AKE_keys: AEAD,,, (...)

* |sitsecure? Why?

More Examples about Reuse

 Examples: Reuse salt in OPAQUE

* Suppose that Alice’s password is pw,, Bob’s password is pwg, and the password files stored in the
server are:

Username: Bob Username: Alice
salt: r salt: r
enc_AKE_keys: AEAD;,,_(...) enc_AKE_keys: AEAD,,, (...)
* Potentialrisks: If Alice’s password file is leaked, then the adversary can launch offline attacks to
recover Bob password from its OPAQUE protocol messages... Bob
o p—
AEAD,,, (...) -

o -
@ ““(‘L;aigg;)""' -7 (Eavesdropping)
Try allpw (and rw = H(pw, h(pw)")) such that

AEAD.Dec does not output rejection...

NI KASSEL
E

U
\"/ RSITAT

More Examples about Reuse

* Other examples:

 Reuse randomness in Schnorr/Schnorr-like signature schemes...
* Reuse of IV inthe AES-GCM mode, or short IV...

Side-Channel Attacks

Side-channel information: By-product information when the system runs cryptographic algorithms.
» E.g., time, power consumption, cache access patterns, ...

Example:
* Timing Attacks
* Cache Attacks

An Example of Timing Attack: A website checks a user’s password character by character,
returning an error as soon as it finds the first mismatch.

Lessons: Use constant-time algorithms, masking sensitive operations, ...

NI KASSEL
E

U
\"/ RSITAT

Towards Post-Quantum Cryptography

* All previous attack examples are about wrong implementations of cryptographic algorithms, but
not about the algorithms themselves...

» Example: Breaking the ElGamal encryption => Solving DH problems...

Towards Post-Quantum Cryptography

* All previous attack examples are about wrong implementations of cryptographic algorithms, but
not about the algorithms themselves...

» Example: Breaking the ElGamal encryption => Solving DH problems...

* Modern cryptography builds on hardness assumptions:

 ElGamal encryption, DHKE, DSA, TLS 1.3, and others all rely on the hardness of Diffie-Hellman or RSA
problems...

* We assume these problems are hard to solve (i.e., there is no polynomial-time algorithm).

* What if these assumptions are broken?

NI KASSEL
E

U
\"/ RSITAT

Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
(

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
(

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

Shor’s algorithm
(quantum)

Peter Williston Shor
(image from Wikipedia)

Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
|

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

£

Shor’s algorithm

Recent progress in

Quantum Computers/Mechanisms...

Impact on Cryptography

* |In the pre-quantum world...

* Symmetric-key cryptography
 Hash functions: SHA2, SHAS3,...
* Symmetric-key (authenticated) encryption: AES, AES-GCM...
« KDF, MAC, PRNG,...

Impact on Cryptography

* |In the pre-quantum world...

* Symmetric-key cryptography
 Hash functions: SHA2, SHAS3,...
* Symmetric-key (authenticated) encryption: AES, AES-GCM...
« KDF, MAC, PRNG,...

* Basis of confidence: Extensively studied, publicly reviewed, ...
* (Orwe could say that they themselves are assumptions...)

Impact on Cryptography

* |In the post-quantum world...

* Symmetric-key cryptography
 Hash functions: SHA2, SHAS3,...
* Symmetric-key (authenticated) encryption: AES, AES-GCM...

* KDF, MAC, PRNG,...

* Basis of confidence: Extensively studied, publicly reviewed, ...

Grover Search:
O(N) » O(WN)
(N = |key space])

O

O

o

Impact on Cryptography

* |In the post-quantum world...

Symmetric-key cryptography
 Hash functions: SHA2, SHAS3,...
* Symmetric-key (authenticated) encryption: AES, AES-GCM...
« KDF, MAC, PRNG,...

Grover Search:

0(N) - O(VN)
(N = |key space])

O

Basis of confidence: Extensively studied, publicly reviewed, ... O
Solution: Double the key size... (not always true)) @

Impact on Cryptography

* |In the pre-quantum world...

* Public-key cryptography
* Key exchange: (EC)DHKE, TLS, ...
* Public-key encryption: ElGamal encryption, DHIES, ...
e Signature: DSA, RSA, ...

 Basis of confidence:
* Provable security (e.g., rigorous security proofs, ...)
* Well-studied and publicly reviewed hardness assumptions

e Classical assumptions: DH (from discrete-log), RSA (from factoring), ...

Impact on Cryptography

* |In the post-quantum world...

* Public-key cryptography
* Key exchange: (EC)DHKE, TLS, ...
* Public-key encryption: ElGamal encryption, DHIES, ...
e Signature: DSA, RSA, ...

* Basis of confidence:
* Provable security (e.g., rigorous security proofs, ...)
* Well-studied and publicly reviewed hardness assumptions
e Classical assumptions: DH (from discrete-log), RSA (from factoring), ...

N 5 0(log(N)),
where N = group/ modulus size

Quantum Fourier transform (QFT):
solve DLOG and Factoring.

Impact on Cryptography

* |In the post-quantum world...

* Public-key cryptography
* Key exchange: (EC)DHKE, TLS, ...
* Public-key encryption: ElGamal encryption, DHIES, ...
e Signature: DSA, RSA, ...

* Basis of confidence:
* Provable security (e.g., rigorous security proofs, ...)
* Well-studied and publicly reviewed hardness assumptions

A - ™) ~Ara—dieaasaratra - » A A 1A S

* New assumptions are needed.

N 5 0(log(N)),
where N = group/ modulus size

Quantum Fourier transform (QFT):
solve DLOG and Factoring.

Post-quantum Assumptions

* Assumptions that are believed to be quantum-secure:
* Lattice-based
* |sogeny-based
* Code-based

Post-guantum Assumptions

* New Direction: Post-Quantum Cryptography

* Cryptographic algorithms run on classical computers, but remain secure against future
quantum computers...

» Still follow the methodology of modern cryptography: Assumptions => Schemes.

* Hardness Assumptions even against quantum adversaries:
e Lattices (Crystal-Kyber/ML-KEM, Crystal-Dilithium/ML-DSA)
* |sogeny (of Elliptic Curves)
* Code-based

NI KASSEL
E

U
\"/ RSITAT

Post-quantum Assumptions

* We have implemented some post-quantum cryptosystems (Homework 2)...
« PQ-TLS
e KEM-TLS
* Both are based on ML-KEM (Kyber) and ML-DSA (Dilithium)

Transition from Pre-Quantum to Post-Quantum

* Should we immediately change everything to be post-quantum?

Transition from Pre-Quantum to Post-Quantum

* Should we immediately change everything to be post-quantum?

* Efficiency of classical algorithms v.s. post-quantum algorithms: (e.g., ECDSA v.s. CRYSTALS-Dilithium)

sk size ~32B ~1.3KB
pk size ~32B ~2.5KB
signature size ~64B ~2.5KB
Running time t 10~100*t

Transition from Pre-Quantum to Post-Quantum

Should we immediately change everything to be post-quantum?

Efficiency of classical algorithms v.s. post-quantum algorithms: (e.g., ECDSA v.s. CRYSTALS-Dilithium)

sk size ~32B ~1.3KB
pk size ~32B ~2.5KB
signature size ~64B ~2.5KB
Running time t 10~100*t

Studies on classical cryptography: since 1970s

Large-scale studies on post-quantum cryptography: since 2010s
 SIDH, a primitive that was believed to be post-quantum secure, was broken...
* Who is the next one?

Transition from Pre-Quantum to Post-Quantum

* Should we wait until the first large-scale quantum computer appears?

* “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)

Transition from Pre-Quantum to Post-Quantum

* Should we wait until the first large-scale quantum computer appears?

* “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)

. TLS 1.3 Server
g”, client_nonce

@ g, server_nonce @

111111
X 4Y
g ’g 5. X
----------- - J@gE o
Trrrnri

A

A

Transition from Pre-Quantum to Post-Quantum

* Should we wait until the first large-scale quantum computer appears?

 “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)

Solution:
g%, client_nonce TLS 1.3 Server Add PQ-secure component so that the
@ - > @ adversary cannot decrypt the TLS key...
) g, server_nonce
‘ L% oY
1099
\/

T3
L‘.‘"‘

- gxy

[

I

I

1Q

LIRS

I~

1

<

I

I

I

v
LLLLLI

Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

The ECDHInTLS 1.3 A simple KE
based on Kyber KEM

g”, client_nonce (epk, esk) < KeyGen epk
> >
g”, server_nonce, ... c (c,K) < Encaps(epk)

<
«

K <« Decaps(esk, c)‘

* Advantages: Classical security provided by ECDH + Quantum security provided by Kyber

Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

(epk,esk) < KeyGen g%, epk, client_nonce

»

g”, c,server_nonce, ... (c¢,K) < Encaps(epk)

<
«

K < Decaps(esk,c)

Keys = KeySchedule(...|| g*” || K ||...)

Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

(epk,esk) < KeyGen g%, epk, client_nonce

»

g”, c, server_nonce, ... (¢, K) < Encaps(epk)

<
«

K < Decaps(esk,c)

Keys = KeySchedule(...|| g* [| K ||...)

K insecure => Keys remain secure!

Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

(epk,esk) < KeyGen g%, epk, client_nonce

»

g”, c, server_nonce, ... (¢, K) < Encaps(epk)

<
«

K < Decaps(esk,c)

Keys = KeySchedule(...|| g* [| K ||...)

g*” insecure in the future => Keys remain secure!

Transition from Pre-Quantum to Post-Quantum

* Some other PQ replacements (or need to be replaced):
 X3DH -> PQXDH -> (fully PQ-secure X3DH-style protocols...)
* PQ-secure Password-based authentication protocols
* PQ-secure OPRF

Transition from Pre-Quantum to Post-Quantum

* Some other PQ replacements (or need to be replaced):
 X3DH -> PQXDH -> (fully PQ-secure X3DH-style protocols...)
 PQ-secure Password-based authentication protocols
* PQ-secure OPRF

Many open problems!

	Slide 1: Cryptography Engineering
	Slide 2: Attacks using Invalid Inputs
	Slide 3: Attacks using Invalid Inputs
	Slide 4: Attacks using Invalid Inputs
	Slide 5: Attacks using Invalid Inputs
	Slide 6: Attacks using Invalid Inputs
	Slide 7: Attacks using Invalid Inputs
	Slide 8: Attacks using Invalid Inputs
	Slide 9: Attacks using Invalid Inputs
	Slide 10: Downgrade Attacks
	Slide 11: More Examples about Reuse
	Slide 12: More Examples about Reuse
	Slide 13: More Examples about Reuse
	Slide 14: More Examples about Reuse
	Slide 15: More Examples about Reuse
	Slide 16: More Examples about Reuse
	Slide 17: Side-Channel Attacks
	Slide 18: Towards Post-Quantum Cryptography
	Slide 19: Towards Post-Quantum Cryptography
	Slide 20: Towards Post-Quantum Cryptography
	Slide 21: Towards Post-Quantum Cryptography
	Slide 22: Towards Post-Quantum Cryptography
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

