
Cryptography Engineering
• Lecture 13 (Feb 04th, 2026)
• Today’s notes:

• Some attacks on Cryptosystems (and how to prevent them)
• Toward Post-Quantum Cryptography

• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞):
A 𝑞-order group 𝔾 with a generator 𝑔

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

𝐾Alice = 𝑌𝑥 𝐾Bob = 𝑋𝑦

• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞):
A 𝒒-order group 𝔾 with a generator 𝒈

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

𝐾Alice = 𝑌𝑥 𝐾Bob = 𝑋𝑦

• The security holds if the protocol
runs on specific groups

• What if we use an element
outside the group 𝔾?

• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞):
A 𝒒-order group 𝔾 with a generator 𝒈

• 𝔾 can be a subgroup of
another group 𝔾′

• Co-factor: 𝔾′ /|𝔾| (the h
value on the RHS figure)

Source: https://neuromancer.sk/std/other/Curve1174

https://neuromancer.sk/std/other/Curve1174

• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞):
A 𝒒-order group 𝔾 with a generator 𝒈

• 𝔾 can be a subgroup of
another group 𝔾′

• Co-factor: 𝔾′ /|𝔾| (the h
value on the RHS figure)

• Use the co-factor to check
group membership

Check 𝑿𝒉 = 𝟏?
// 1 is the identity group element
If so, reject
else:

𝑦 ←$ ℤ𝑞

𝑋 = 𝑔𝑥

• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

ℎ 𝑝𝑤 𝛼 ∈ 𝔾

ℎ 𝑝𝑤 𝛼⋅𝑠𝑎𝑙𝑡 ∈ 𝔾

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2):
A 𝒒-order group 𝔾 with a generator 𝒈,

and 𝔾′ / 𝔾 = ℎ

• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

𝑋 ∈ 𝔾′

𝑋𝑠𝑎𝑙𝑡 ∈ 𝔾′

Find an element 𝑋 s.t.
𝑋’s order is 2

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2):
A 𝒒-order group 𝔾 with a generator 𝒈,

and 𝔾′ / 𝔾 = ℎ

• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

𝑋 ∈ 𝔾′

𝑋𝑠𝑎𝑙𝑡 ∈ 𝔾′

Find an element 𝑋 s.t.
𝑋’s order is 2

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2):
A 𝒒-order group 𝔾 with a generator 𝒈,

and 𝔾′ / 𝔾 = ℎ

Little Algebra:
 If 𝑋’s order is 2, then 𝑋𝑟 = 𝑋(𝑟 mod 2) => We can determine the parity
of the salt: 𝑠𝑎𝑙𝑡 is an odd/even number if 𝑋𝑠𝑎𝑙𝑡 = 𝑋

• Other Example:
• Invalid Curve Attacks (e.g. ECDSA): Using insecure curves.
• Invalid public keys
• …

• Lessons: Follow the standards(/specifications/…), and keep updating with them…

Attacks using Invalid Inputs

• Exploit vulnerabilities in compatibility or protocol negotiation to downgrade cryptographic
protocols to weaker or obsolete versions.

• Example: TLS ciphercuite negotiation
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secure)
• TLS_RSA_WITH_RC4_128_SHA (no forward secrecy)

• Lessons: Use the latest protocol version (such as TLS 1.3), disable insecure or outdated
protocols/suites on both sides.

Downgrade Attacks

More Examples about Reuse
• Previous Example: Randomness Reuse in the DSA signature => Recovery of secret key

• Why shouldn’t we reuse randomness?

➢An informal principle: Security of cryptosystem comes from the secret key and the randomness
➢ Secret key: High entropic, the “source” of security, ...
➢ Randomness/nonce/salt: Independency when using the same key, Freshness, ...

• Example: Reuse randomness in the Hashed ElGamal Encryption

ElGamalEnc(public_key = 𝑔𝑥, plaintext = 𝑚)

1. 𝑟 ←$ ℤ𝑞

2. 𝑐0 = 𝑔𝑟

3. 𝑐1 = 𝐻 𝑔𝑥𝑟 ⊕ 𝑚
4. Return (𝑐0, 𝑐1)

// (𝔾, 𝑔, 𝑞): A 𝑞-order group 𝔾 with a generator 𝑔

Encrypt 𝑚 and 𝑚′ using
the same randomness

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚′

More Examples about Reuse

More Examples about Reuse
• Example: Reuse randomness in the Hashed ElGamal Encryption

ElGamalEnc(public_key = 𝑔𝑥, plaintext = 𝑚)

1. 𝑟 ←$ ℤ𝑞

2. 𝑐0 = 𝑔𝑟

3. 𝑐1 = 𝐻 𝑔𝑥𝑟 ⊕ 𝑚
4. Return (𝑐0, 𝑐1)

// (𝔾, 𝑔, 𝑞): A 𝑞-order group 𝔾 with a generator 𝑔

Encrypt 𝑚 and 𝑚′ using
the same randomness

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚′
𝑚′ ⊕ 𝑚

More Examples about Reuse
• Examples: Reuse salt in OPAQUE

• Suppose that Alice’s password is 𝑝𝑤𝐴, Bob’s password is 𝑝𝑤𝐵, and the password files stored in the
server are:

• Is it secure? Why?

Username: Bob
salt: 𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐵

(…)

Username: Alice
salt: 𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐴

(…)

More Examples about Reuse
• Examples: Reuse salt in OPAQUE

• Suppose that Alice’s password is 𝑝𝑤𝐴, Bob’s password is 𝑝𝑤𝐵, and the password files stored in the
server are:

• Potential risks: If Alice’s password file is leaked, then the adversary can launch offline attacks to
recover Bob password from its OPAQUE protocol messages…

𝑟, …

(Leakage)

Bob

AEAD𝑟𝑤𝐵
(…)

(Eavesdropping)

Try all 𝑝𝑤 (and 𝑟𝑤 = 𝐻(𝑝𝑤, ℎ 𝑝𝑤 𝑟)) such that
AEAD.Dec does not output rejection…

Username: Bob
salt: 𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐵

(…)

Username: Alice
salt: 𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐴

(…)

• Other examples:
• Reuse randomness in Schnorr/Schnorr-like signature schemes…
• Reuse of IV in the AES-GCM mode, or short IV…
• …

More Examples about Reuse

• Side-channel information: By-product information when the system runs cryptographic algorithms.
◼ E.g., time, power consumption, cache access patterns, …

• Example:
• Timing Attacks
• Cache Attacks
• …

• An Example of Timing Attack: A website checks a user’s password character by character,
returning an error as soon as it finds the first mismatch.

• Lessons: Use constant-time algorithms, masking sensitive operations, …

Side-Channel Attacks

Towards Post-Quantum Cryptography
• All previous attack examples are about wrong implementations of cryptographic algorithms, but

not about the algorithms themselves…
➢ Example: Breaking the ElGamal encryption => Solving DH problems…

Towards Post-Quantum Cryptography
• All previous attack examples are about wrong implementations of cryptographic algorithms, but

not about the algorithms themselves…
➢ Example: Breaking the ElGamal encryption => Solving DH problems…

• Modern cryptography builds on hardness assumptions:
• ElGamal encryption, DHKE, DSA, TLS 1.3, and others all rely on the hardness of Diffie-Hellman or RSA

problems…
• We assume these problems are hard to solve (i.e., there is no polynomial-time algorithm).

• What if these assumptions are broken?

Towards Post-Quantum Cryptography

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

Hardness of
DH/RSA

problems

Towards Post-Quantum Cryptography

Peter Williston Shor
(image from Wikipedia)Source: xkcd/2347 and Nadia

Heninger’s talk in PKC2024

Hardness of
DH/RSA

problems

Shor’s algorithm
(quantum)

Towards Post-Quantum Cryptography

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

Hardness of
DH/RSA

problems

Shor’s algorithm

Recent progress in
Quantum Computers/Mechanisms…

• In the pre-quantum world...

• Symmetric-key cryptography
• Hash functions: SHA2, SHA3,...
• Symmetric-key (authenticated) encryption: AES, AES-GCM...
• KDF, MAC, PRNG,...

Impact on Cryptography

• In the pre-quantum world...

• Symmetric-key cryptography
• Hash functions: SHA2, SHA3,...
• Symmetric-key (authenticated) encryption: AES, AES-GCM...
• KDF, MAC, PRNG,...

• Basis of confidence: Extensively studied, publicly reviewed, ...
• (Or we could say that they themselves are assumptions...)

Impact on Cryptography

• In the post-quantum world...

• Symmetric-key cryptography
• Hash functions: SHA2, SHA3,...
• Symmetric-key (authenticated) encryption: AES, AES-GCM...
• KDF, MAC, PRNG,...

• Basis of confidence: Extensively studied, publicly reviewed, ...

Grover Search:
𝑂 𝑁 → 𝑂(𝑁)

(N = |key space|)

Impact on Cryptography

• In the post-quantum world...

• Symmetric-key cryptography
• Hash functions: SHA2, SHA3,...
• Symmetric-key (authenticated) encryption: AES, AES-GCM...
• KDF, MAC, PRNG,...

• Basis of confidence: Extensively studied, publicly reviewed, ...

• Solution: Double the key size... (not always true)

Grover Search:
𝑂 𝑁 → 𝑂(𝑁)

(N = |key space|)

Impact on Cryptography

• In the pre-quantum world...

• Public-key cryptography
• Key exchange: (EC)DHKE, TLS, ...
• Public-key encryption: ElGamal encryption, DHIES, ...
• Signature: DSA, RSA, ...
• ...

• Basis of confidence:
• Provable security (e.g., rigorous security proofs, ...)
• Well-studied and publicly reviewed hardness assumptions
• Classical assumptions: DH (from discrete-log), RSA (from factoring), ...

Impact on Cryptography

• In the post-quantum world...

• Public-key cryptography
• Key exchange: (EC)DHKE, TLS, ...
• Public-key encryption: ElGamal encryption, DHIES, ...
• Signature: DSA, RSA, ...
• ...

• Basis of confidence:
• Provable security (e.g., rigorous security proofs, ...)
• Well-studied and publicly reviewed hardness assumptions
• Classical assumptions: DH (from discrete-log), RSA (from factoring), ...

Quantum Fourier transform (QFT):
solve DLOG and Factoring.

𝑁𝑂 1 → 𝑶(𝒍𝒐𝒈 𝑵),
where N = group/ modulus size

Impact on Cryptography

• In the post-quantum world...

• Public-key cryptography
• Key exchange: (EC)DHKE, TLS, ...
• Public-key encryption: ElGamal encryption, DHIES, ...
• Signature: DSA, RSA, ...
• ...

• Basis of confidence:
• Provable security (e.g., rigorous security proofs, ...)
• Well-studied and publicly reviewed hardness assumptions
• Classical assumptions: DH (from discrete-log), RSA (from factoring), ...
• New assumptions are needed.

Quantum Fourier transform (QFT):
solve DLOG and Factoring.

𝑁𝑂 1 → 𝑶(𝒍𝒐𝒈 𝑵),
where N = group/ modulus size

Impact on Cryptography

• Assumptions that are believed to be quantum-secure:
• Lattice-based
• Isogeny-based
• Code-based
• …

Post-quantum Assumptions

• New Direction: Post-Quantum Cryptography
• Cryptographic algorithms run on classical computers, but remain secure against future

quantum computers…

• Still follow the methodology of modern cryptography: Assumptions => Schemes.

• Hardness Assumptions even against quantum adversaries:
• Lattices (Crystal-Kyber/ML-KEM, Crystal-Dilithium/ML-DSA)
• Isogeny (of Elliptic Curves)
• Code-based
• …

Post-quantum Assumptions

• We have implemented some post-quantum cryptosystems (Homework 2)…
• PQ-TLS
• KEM-TLS
• Both are based on ML-KEM (Kyber) and ML-DSA (Dilithium)

Post-quantum Assumptions

• Should we immediately change everything to be post-quantum?

Transition from Pre-Quantum to Post-Quantum

• Should we immediately change everything to be post-quantum?

• Efficiency of classical algorithms v.s. post-quantum algorithms: (e.g., ECDSA v.s. CRYSTALS-Dilithium)

Transition from Pre-Quantum to Post-Quantum

ECDSA Dilithium

sk size ~32B ~1.3KB

pk size ~32B ~2.5KB

signature size ~64B ~2.5KB

Running time 𝑡 10~100*𝑡

• Should we immediately change everything to be post-quantum?

• Efficiency of classical algorithms v.s. post-quantum algorithms: (e.g., ECDSA v.s. CRYSTALS-Dilithium)

• Studies on classical cryptography: since 1970s

• Large-scale studies on post-quantum cryptography: since 2010s
• SIDH, a primitive that was believed to be post-quantum secure, was broken…
• Who is the next one?

Transition from Pre-Quantum to Post-Quantum

ECDSA Dilithium

sk size ~32B ~1.3KB

pk size ~32B ~2.5KB

signature size ~64B ~2.5KB

Running time 𝑡 10~100*𝑡

• Should we wait until the first large-scale quantum computer appears?

• “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)

Transition from Pre-Quantum to Post-Quantum

• Should we wait until the first large-scale quantum computer appears?

• “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)

Transition from Pre-Quantum to Post-Quantum

𝑔𝑥, client_nonce

𝑔𝑦, server_nonce

⋮

𝑔𝑥, 𝑔𝑦

TLS 1.3 Server

𝑔𝑥, 𝑔𝑦

𝑔𝑥𝑦

• Should we wait until the first large-scale quantum computer appears?

• “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)

Transition from Pre-Quantum to Post-Quantum

𝑔𝑥, client_nonce

𝑔𝑦, server_nonce

⋮

𝑔𝑥, 𝑔𝑦

TLS 1.3 Server

𝑔𝑥, 𝑔𝑦

𝑔𝑥𝑦

Solution:
Add PQ-secure component so that the

adversary cannot decrypt the TLS key...

• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

Transition from Pre-Quantum to Post-Quantum

• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

• Advantages: Classical security provided by ECDH + Quantum security provided by Kyber

A simple KE
based on Kyber KEM

𝑒𝑝𝑘, 𝑒𝑠𝑘 ← KeyGen 𝑒𝑝𝑘

𝐾 ← Decaps 𝑒𝑠𝑘, 𝑐

𝑐 (𝑐, 𝐾) ← Encaps 𝑒𝑝𝑘

The ECDH in TLS 1.3

𝑔𝑥, client_nonce

𝑔𝑦, server_nonce, ...

⋮

Transition from Pre-Quantum to Post-Quantum

• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

𝑒𝑝𝑘, 𝑒𝑠𝑘 ← KeyGen

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

𝑔𝑥, 𝑒𝑝𝑘, client_nonce

𝑔𝑦, 𝑐, server_nonce, ...

⋮

(𝑐, 𝐾) ← Encaps 𝑒𝑝𝑘

𝐾 ← Decaps 𝑒𝑠𝑘, 𝑐

Keys = KeySchedule(...|| 𝑔𝑥𝑦 || 𝐾 ||...)

Transition from Pre-Quantum to Post-Quantum

• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

𝑒𝑝𝑘, 𝑒𝑠𝑘 ← KeyGen

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

𝑔𝑥, 𝑒𝑝𝑘, client_nonce

𝑔𝑦, 𝑐, server_nonce, ...

⋮

(𝑐, 𝐾) ← Encaps 𝑒𝑝𝑘

𝐾 ← Decaps 𝑒𝑠𝑘, 𝑐

Keys = KeySchedule(...|| 𝑔𝑥𝑦 || 𝐾 ||...)

Transition from Pre-Quantum to Post-Quantum

𝐾 insecure => Keys remain secure!

• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

𝑒𝑝𝑘, 𝑒𝑠𝑘 ← KeyGen

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

𝑔𝑥, 𝑒𝑝𝑘, client_nonce

𝑔𝑦, 𝑐, server_nonce, ...

⋮

(𝑐, 𝐾) ← Encaps 𝑒𝑝𝑘

𝐾 ← Decaps 𝑒𝑠𝑘, 𝑐

Keys = KeySchedule(...|| 𝑔𝑥𝑦 || 𝐾 ||...)

Transition from Pre-Quantum to Post-Quantum

𝑔𝑥𝑦 insecure in the future => Keys remain secure!

• Some other PQ replacements (or need to be replaced):
• X3DH -> PQXDH -> (fully PQ-secure X3DH-style protocols…)

• PQ-secure Password-based authentication protocols

• PQ-secure OPRF

• …

Transition from Pre-Quantum to Post-Quantum

• Some other PQ replacements (or need to be replaced):
• X3DH -> PQXDH -> (fully PQ-secure X3DH-style protocols…)

• PQ-secure Password-based authentication protocols

• PQ-secure OPRF

• …

Transition from Pre-Quantum to Post-Quantum

Many open problems!

	Slide 1: Cryptography Engineering
	Slide 2: Attacks using Invalid Inputs
	Slide 3: Attacks using Invalid Inputs
	Slide 4: Attacks using Invalid Inputs
	Slide 5: Attacks using Invalid Inputs
	Slide 6: Attacks using Invalid Inputs
	Slide 7: Attacks using Invalid Inputs
	Slide 8: Attacks using Invalid Inputs
	Slide 9: Attacks using Invalid Inputs
	Slide 10: Downgrade Attacks
	Slide 11: More Examples about Reuse
	Slide 12: More Examples about Reuse
	Slide 13: More Examples about Reuse
	Slide 14: More Examples about Reuse
	Slide 15: More Examples about Reuse
	Slide 16: More Examples about Reuse
	Slide 17: Side-Channel Attacks
	Slide 18: Towards Post-Quantum Cryptography
	Slide 19: Towards Post-Quantum Cryptography
	Slide 20: Towards Post-Quantum Cryptography
	Slide 21: Towards Post-Quantum Cryptography
	Slide 22: Towards Post-Quantum Cryptography
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

