
Cryptography Engineering 
• Lecture 13 (Feb 04th, 2026)
• Today’s notes:

• Some attacks on Cryptosystems (and how to prevent them)
• Toward Post-Quantum Cryptography



• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞): 
A 𝑞-order group 𝔾 with a generator 𝑔

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

𝐾Alice = 𝑌𝑥 𝐾Bob = 𝑋𝑦



• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞): 
A 𝒒-order group 𝔾 with a generator 𝒈

𝑥 ←$ ℤ𝑞 𝑦 ←$ ℤ𝑞
𝑋 = 𝑔𝑥

𝑌 = 𝑔𝑦

𝐾Alice = 𝑌𝑥 𝐾Bob = 𝑋𝑦

• The security holds if the protocol 
runs on specific groups

• What if we use an element 
outside the group 𝔾? 



• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞): 
A 𝒒-order group 𝔾 with a generator 𝒈

• 𝔾 can be a subgroup of 
another group 𝔾′

• Co-factor: 𝔾′ /|𝔾| (the h 
value on the RHS figure)

Source: https://neuromancer.sk/std/other/Curve1174 

https://neuromancer.sk/std/other/Curve1174


• The adversary sends data that violates the protocol or data format.
• Example: DHKE

Attacks using Invalid Inputs

(𝔾, 𝑔, 𝑞): 
A 𝒒-order group 𝔾 with a generator 𝒈

• 𝔾 can be a subgroup of 
another group 𝔾′

• Co-factor: 𝔾′ /|𝔾| (the h 
value on the RHS figure)

• Use the co-factor to check 
group membership

Check 𝑿𝒉 = 𝟏?
// 1 is the identity group element
If so, reject
else:

𝑦 ←$ ℤ𝑞  

𝑋 = 𝑔𝑥



• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

ℎ 𝑝𝑤 𝛼 ∈ 𝔾

ℎ 𝑝𝑤 𝛼⋅𝑠𝑎𝑙𝑡 ∈  𝔾

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2): 
A 𝒒-order group 𝔾 with a generator 𝒈, 

and 𝔾′ / 𝔾 = ℎ



• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

𝑋 ∈ 𝔾′

𝑋𝑠𝑎𝑙𝑡 ∈ 𝔾′

Find an element 𝑋  s.t. 
𝑋’s order is 2

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2): 
A 𝒒-order group 𝔾 with a generator 𝒈, 

and 𝔾′ / 𝔾 = ℎ



• Toy Example of attacking OPAQUE:

Attacks using Invalid Inputs

𝑋 ∈ 𝔾′

𝑋𝑠𝑎𝑙𝑡 ∈ 𝔾′

Find an element 𝑋  s.t. 
𝑋’s order is 2

(𝔾 ⊂ 𝔾′, 𝑔, 𝑞, ℎ = 2): 
A 𝒒-order group 𝔾 with a generator 𝒈, 

and 𝔾′ / 𝔾 = ℎ

Little Algebra:
 If 𝑋’s order is 2, then 𝑋𝑟 = 𝑋(𝑟 mod 2) => We can determine the parity 
of the salt: 𝑠𝑎𝑙𝑡 is an odd/even number if 𝑋𝑠𝑎𝑙𝑡 = 𝑋 



• Other Example:
• Invalid Curve Attacks (e.g. ECDSA): Using insecure curves.
• Invalid public keys
• …

• Lessons: Follow the standards(/specifications/…), and keep updating with them…

Attacks using Invalid Inputs



• Exploit vulnerabilities in compatibility or protocol negotiation to downgrade cryptographic 
protocols to weaker or obsolete versions.

• Example: TLS ciphercuite negotiation
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secure)
• TLS_RSA_WITH_RC4_128_SHA (no forward secrecy)

• Lessons: Use the latest protocol version (such as TLS 1.3), disable insecure or outdated 
protocols/suites on both sides.

Downgrade Attacks



More Examples about Reuse
• Previous Example: Randomness Reuse in the DSA signature => Recovery of secret key

• Why shouldn’t we reuse randomness?

➢An informal principle: Security of cryptosystem comes from the secret key and the randomness
➢ Secret key: High entropic, the “source” of security, ...
➢ Randomness/nonce/salt: Independency when using the same key, Freshness, ...



• Example: Reuse randomness in the Hashed ElGamal Encryption 

ElGamalEnc(public_key = 𝑔𝑥, plaintext = 𝑚)

1. 𝑟 ←$ ℤ𝑞

2. 𝑐0 = 𝑔𝑟

3. 𝑐1 = 𝐻 𝑔𝑥𝑟 ⊕ 𝑚
4. Return (𝑐0, 𝑐1)

// (𝔾, 𝑔, 𝑞): A 𝑞-order group 𝔾 with a generator 𝑔

Encrypt 𝑚 and 𝑚′ using 
the same randomness 

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚′

More Examples about Reuse



More Examples about Reuse
• Example: Reuse randomness in the Hashed ElGamal Encryption 

ElGamalEnc(public_key = 𝑔𝑥, plaintext = 𝑚)

1. 𝑟 ←$ ℤ𝑞

2. 𝑐0 = 𝑔𝑟

3. 𝑐1 = 𝐻 𝑔𝑥𝑟 ⊕ 𝑚
4. Return (𝑐0, 𝑐1)

// (𝔾, 𝑔, 𝑞): A 𝑞-order group 𝔾 with a generator 𝑔

Encrypt 𝑚 and 𝑚′ using 
the same randomness 

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚

𝑔𝑟, 𝐻 𝑔𝑥𝑟 ⊕ 𝑚′
𝑚′ ⊕ 𝑚



More Examples about Reuse
• Examples: Reuse salt in OPAQUE

• Suppose that Alice’s password is 𝑝𝑤𝐴, Bob’s password is 𝑝𝑤𝐵, and the password files stored in the 
server are:

• Is it secure? Why?

Username:             Bob
salt:                            𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐵

(… ) 

Username:             Alice
salt:                            𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐴

(… ) 



More Examples about Reuse
• Examples: Reuse salt in OPAQUE

• Suppose that Alice’s password is 𝑝𝑤𝐴, Bob’s password is 𝑝𝑤𝐵, and the password files stored in the 
server are:

• Potential risks: If Alice’s password file is leaked, then the adversary can launch offline attacks to 
recover Bob password from its OPAQUE protocol messages…

𝑟, …

(Leakage)

Bob

AEAD𝑟𝑤𝐵
(… )

(Eavesdropping)

Try all 𝑝𝑤 (and 𝑟𝑤 = 𝐻(𝑝𝑤, ℎ 𝑝𝑤 𝑟)) such that 
AEAD.Dec does not output rejection… 

Username:             Bob
salt:                            𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐵

(… ) 

Username:             Alice
salt:                            𝑟
enc_AKE_keys: AEAD𝑟𝑤𝐴

(… ) 



• Other examples:
• Reuse randomness in Schnorr/Schnorr-like signature schemes…
• Reuse of IV in the AES-GCM mode, or short IV…
• …

More Examples about Reuse



• Side-channel information: By-product information when the system runs cryptographic algorithms.
◼ E.g., time, power consumption, cache access patterns, …

• Example: 
• Timing Attacks
• Cache Attacks
• …

• An Example of Timing Attack: A website checks a user’s password character by character, 
returning an error as soon as it finds the first mismatch. 

• Lessons: Use constant-time algorithms, masking sensitive operations, …

Side-Channel Attacks



Towards Post-Quantum Cryptography
• All previous attack examples are about wrong implementations of cryptographic algorithms, but 

not about the algorithms themselves…
➢ Example: Breaking the ElGamal encryption => Solving DH problems…



Towards Post-Quantum Cryptography
• All previous attack examples are about wrong implementations of cryptographic algorithms, but 

not about the algorithms themselves…
➢ Example: Breaking the ElGamal encryption => Solving DH problems…

• Modern cryptography builds on hardness assumptions:
• ElGamal encryption, DHKE, DSA, TLS 1.3, and others all rely on the hardness of Diffie-Hellman or RSA 

problems…
• We assume these problems are hard to solve (i.e., there is no polynomial-time algorithm).

• What if these assumptions are broken?



Towards Post-Quantum Cryptography

Source: xkcd/2347 and Nadia 
Heninger’s talk in PKC2024

Hardness of 
DH/RSA 

problems



Towards Post-Quantum Cryptography

Peter Williston Shor
(image from Wikipedia)Source: xkcd/2347 and Nadia 

Heninger’s talk in PKC2024

Hardness of 
DH/RSA 

problems

Shor’s algorithm 
(quantum)



Towards Post-Quantum Cryptography

Source: xkcd/2347 and Nadia 
Heninger’s talk in PKC2024

Hardness of 
DH/RSA 

problems

Shor’s algorithm

Recent progress in 
Quantum Computers/Mechanisms…



• In the pre-quantum world...

• Symmetric-key cryptography
• Hash functions: SHA2, SHA3,...
• Symmetric-key (authenticated) encryption: AES, AES-GCM...
• KDF, MAC, PRNG,...

Impact on Cryptography



• In the pre-quantum world...

• Symmetric-key cryptography
• Hash functions: SHA2, SHA3,...
• Symmetric-key (authenticated) encryption: AES, AES-GCM...
• KDF, MAC, PRNG,...

• Basis of confidence: Extensively studied, publicly reviewed, ...
• (Or we could say that they themselves are assumptions...)

Impact on Cryptography



• In the post-quantum world...

• Symmetric-key cryptography
• Hash functions: SHA2, SHA3,...
• Symmetric-key (authenticated) encryption: AES, AES-GCM...
• KDF, MAC, PRNG,...

• Basis of confidence: Extensively studied, publicly reviewed, ...

Grover Search: 
𝑂 𝑁 → 𝑂( 𝑁)

(N = |key space|)

Impact on Cryptography



• In the post-quantum world...

• Symmetric-key cryptography
• Hash functions: SHA2, SHA3,...
• Symmetric-key (authenticated) encryption: AES, AES-GCM...
• KDF, MAC, PRNG,...

• Basis of confidence: Extensively studied, publicly reviewed, ...

• Solution: Double the key size... (not always true)

Grover Search: 
𝑂 𝑁 → 𝑂( 𝑁)

(N = |key space|)

Impact on Cryptography



• In the pre-quantum world...

• Public-key cryptography
• Key exchange: (EC)DHKE, TLS, ...
• Public-key encryption: ElGamal encryption, DHIES, ...
• Signature: DSA, RSA, ...
• ...

• Basis of confidence: 
• Provable security (e.g., rigorous security proofs, ...)
• Well-studied and publicly reviewed hardness assumptions
• Classical assumptions: DH (from discrete-log), RSA (from factoring), ...

Impact on Cryptography



• In the post-quantum world...

• Public-key cryptography
• Key exchange: (EC)DHKE, TLS, ...
• Public-key encryption: ElGamal encryption, DHIES, ...
• Signature: DSA, RSA, ...
• ...

• Basis of confidence: 
• Provable security (e.g., rigorous security proofs, ...)
• Well-studied and publicly reviewed hardness assumptions
• Classical assumptions: DH (from discrete-log), RSA (from factoring), ...

Quantum Fourier transform (QFT):
solve DLOG and Factoring. 

𝑁𝑂 1  →  𝑶(𝒍𝒐𝒈 𝑵 ), 
where N = group/ modulus size

Impact on Cryptography



• In the post-quantum world...

• Public-key cryptography
• Key exchange: (EC)DHKE, TLS, ...
• Public-key encryption: ElGamal encryption, DHIES, ...
• Signature: DSA, RSA, ...
• ...

• Basis of confidence: 
• Provable security (e.g., rigorous security proofs, ...)
• Well-studied and publicly reviewed hardness assumptions
• Classical assumptions: DH (from discrete-log), RSA (from factoring), ...
• New assumptions are needed.

Quantum Fourier transform (QFT):
solve DLOG and Factoring. 

𝑁𝑂 1  →  𝑶(𝒍𝒐𝒈 𝑵 ), 
where N = group/ modulus size

Impact on Cryptography



• Assumptions that are believed to be quantum-secure:
• Lattice-based
• Isogeny-based
• Code-based
• …

Post-quantum Assumptions



• New Direction: Post-Quantum Cryptography
• Cryptographic algorithms run on classical computers, but remain secure against future 

quantum computers…

• Still follow the methodology of modern cryptography: Assumptions => Schemes.

• Hardness Assumptions even against quantum adversaries:
• Lattices (Crystal-Kyber/ML-KEM, Crystal-Dilithium/ML-DSA)
• Isogeny (of Elliptic Curves)
• Code-based
• …

Post-quantum Assumptions



• We have implemented some post-quantum cryptosystems (Homework 2)…
• PQ-TLS
• KEM-TLS
• Both are based on ML-KEM (Kyber) and ML-DSA (Dilithium) 

Post-quantum Assumptions



• Should we immediately change everything to be post-quantum?

Transition from Pre-Quantum to Post-Quantum



• Should we immediately change everything to be post-quantum?

• Efficiency of classical algorithms v.s. post-quantum algorithms: (e.g., ECDSA v.s. CRYSTALS-Dilithium)

Transition from Pre-Quantum to Post-Quantum

ECDSA Dilithium

sk size ~32B ~1.3KB

pk size ~32B ~2.5KB

signature size ~64B ~2.5KB

Running time 𝑡 10~100*𝑡



• Should we immediately change everything to be post-quantum?

• Efficiency of classical algorithms v.s. post-quantum algorithms: (e.g., ECDSA v.s. CRYSTALS-Dilithium)

• Studies on classical cryptography: since 1970s 

• Large-scale studies on post-quantum cryptography: since 2010s
• SIDH, a primitive that was believed to be post-quantum secure, was broken…
• Who is the next one?

Transition from Pre-Quantum to Post-Quantum

ECDSA Dilithium

sk size ~32B ~1.3KB

pk size ~32B ~2.5KB

signature size ~64B ~2.5KB

Running time 𝑡 10~100*𝑡



• Should we wait until the first large-scale quantum computer appears?

• “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future, 
quantum computers decrypt this data (decrypt later)

Transition from Pre-Quantum to Post-Quantum



• Should we wait until the first large-scale quantum computer appears?

• “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future, 
quantum computers decrypt this data (decrypt later)

Transition from Pre-Quantum to Post-Quantum

𝑔𝑥, client_nonce

𝑔𝑦, server_nonce

⋮

𝑔𝑥, 𝑔𝑦

TLS 1.3 Server

𝑔𝑥, 𝑔𝑦

𝑔𝑥𝑦



• Should we wait until the first large-scale quantum computer appears?

• “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future, 
quantum computers decrypt this data (decrypt later)

Transition from Pre-Quantum to Post-Quantum

𝑔𝑥, client_nonce

𝑔𝑦, server_nonce

⋮

𝑔𝑥, 𝑔𝑦

TLS 1.3 Server

𝑔𝑥, 𝑔𝑦

𝑔𝑥𝑦

Solution: 
Add PQ-secure component so that the 

adversary cannot decrypt the TLS key...



• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

Transition from Pre-Quantum to Post-Quantum



• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

• Advantages: Classical security provided by ECDH + Quantum security provided by Kyber

A simple KE
based on Kyber KEM

𝑒𝑝𝑘, 𝑒𝑠𝑘 ← KeyGen 𝑒𝑝𝑘

𝐾 ← Decaps 𝑒𝑠𝑘, 𝑐

𝑐 (𝑐, 𝐾) ← Encaps 𝑒𝑝𝑘

The ECDH in TLS 1.3

𝑔𝑥, client_nonce

𝑔𝑦, server_nonce, ...

⋮

Transition from Pre-Quantum to Post-Quantum



• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

𝑒𝑝𝑘, 𝑒𝑠𝑘 ← KeyGen

Modify the KE part in TLS 1.3: 
ECDH+ Kyber KEM

𝑔𝑥, 𝑒𝑝𝑘,  client_nonce

𝑔𝑦, 𝑐, server_nonce, ...

⋮

(𝑐, 𝐾) ← Encaps 𝑒𝑝𝑘

𝐾 ← Decaps 𝑒𝑠𝑘, 𝑐

Keys = KeySchedule(...|| 𝑔𝑥𝑦 || 𝐾 ||... )

Transition from Pre-Quantum to Post-Quantum



• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

𝑒𝑝𝑘, 𝑒𝑠𝑘 ← KeyGen

Modify the KE part in TLS 1.3: 
ECDH+ Kyber KEM

𝑔𝑥, 𝑒𝑝𝑘,  client_nonce

𝑔𝑦, 𝑐, server_nonce, ...

⋮

(𝑐, 𝐾) ← Encaps 𝑒𝑝𝑘

𝐾 ← Decaps 𝑒𝑠𝑘, 𝑐

Keys = KeySchedule(...|| 𝑔𝑥𝑦 || 𝐾 ||... )

Transition from Pre-Quantum to Post-Quantum

𝐾 insecure => Keys remain secure! 



• Hybrid Cryptography
• Classical algorithms + post-quantum algorithms
• Example: ECDH + ECDSA in TLS 1.3 -> (ECDH + Kyber) + ECDSA

𝑒𝑝𝑘, 𝑒𝑠𝑘 ← KeyGen

Modify the KE part in TLS 1.3: 
ECDH+ Kyber KEM

𝑔𝑥, 𝑒𝑝𝑘,  client_nonce

𝑔𝑦, 𝑐, server_nonce, ...

⋮

(𝑐, 𝐾) ← Encaps 𝑒𝑝𝑘

𝐾 ← Decaps 𝑒𝑠𝑘, 𝑐

Keys = KeySchedule(...|| 𝑔𝑥𝑦 || 𝐾 ||... )

Transition from Pre-Quantum to Post-Quantum

𝑔𝑥𝑦 insecure in the future => Keys remain secure! 



• Some other PQ replacements (or need to be replaced):
• X3DH -> PQXDH -> (fully PQ-secure X3DH-style protocols…) 

• PQ-secure Password-based authentication protocols

• PQ-secure OPRF

• …

Transition from Pre-Quantum to Post-Quantum



• Some other PQ replacements (or need to be replaced):
• X3DH -> PQXDH -> (fully PQ-secure X3DH-style protocols…) 

• PQ-secure Password-based authentication protocols

• PQ-secure OPRF

• …

Transition from Pre-Quantum to Post-Quantum

Many open problems!
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