Cryptography Engineering

* Lecture 13 (Feb 04, 2026)

* Today’s notes:
 Some attacks on Cryptosystems (and how to prevent them)
* Toward Post-Quantum Cryptography




Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.
* Example: DHKE
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Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.
* Example: DHKE

Q (G, g,9):

m A g-order group @ with a generator g m The security holds if the protocol
runs on specific groups

— X
X<—$Zq X_g N y<—$Zq

What if we use an element

Y =g7 outside the group G?

A

Kalice =Y”* Kgop = X7




Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.

* Example: DHKE Curve1174

251-bit prime field Weierstrass curve.

((G], g’ CI): Curve from
A g-order group @ with a generator g

v¥=a®+tax+b

Parameters

G can be a subgroup of
another group G’
Co-factor: |G'| /|G| (the h

Name Value

ex7 iz
Ox486BE25B34C8080922B969257EER54CA0AF914A29067A5560BBIAEEOBCE7AGD
OXE347A25BF875DD2F1F12D8A10334D417CC15E77893A99FABF278CAS63072E6
(Ox3BE821D63D2CD5AFEQS04FA52E5CFA7A60A10446928CEAECFDS294F80BA5051 ,
OX66FEAE7B8B6FE152F743393029A61BFB839747C8FBOOF7B27A6841C07532A0)
OX1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF77965CADFD307348944D45FD166C971
ox04

value on the RHS figure)

Source: https://neuromancer.sk/std/other/Curve1174
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https://neuromancer.sk/std/other/Curve1174

Attacks using Invalid Inputs

* The adversary sends data that violates the protocol or data format.

* Example: DHKE

(@ 9,9):
A g-order group @ with a generator g

)
BN

v

G can be a subgroup of
another group G’
Co-factor: |G'|/|G]| (the h

value on the RHS figure)
Use the co-factor to check
group membership

Check X" = 1?

// 1 is the identity group element
If so, reject

else:

Y <3 Lg




Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

@ h(pw)% € G
m ) h(pw)a-salt =

(GcG',g,q9,h=2):
A g-order group G with a generator g,
and |G'|/|G| =h




Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

XeQ
5 Xsalt = (G’

Find an element X s.t.
X’s orderis 2

(GcG',g,q9,h=2):
A g-order group G with a generator g,
and |G'|/|G| =h




Attacks using Invalid Inputs

* Toy Example of attacking OPAQUE:

(Gc G',g,q9,h=2):
A g-order group G with a generator g,
and |G'|/|G| =h

Find an element X s.t.
X’s orderis 2

Little Algebra:
If X’s order is 2, then X" = X (" m0d2) =5 We can determine the parity

of the salt: salt is an odd/even number if XSalit = X




Attacks using Invalid Inputs

* Other Example:
* |nvalid Curve Attacks (e.g. ECDSA): Using insecure curves.
* Invalid public keys

* Lessons: Follow the standards(/specifications/...), and keep updating with them...




Downgrade Attacks

* Exploit vulnerabilities in compatibility or protocol negotiation to downgrade cryptographic
protocols to weaker or obsolete versions.

* Example: TLS ciphercuite negotiation
« TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (secure)
e TLS_RSA_WITH_RC4_128_SHA (no forward secrecy)

* Lessons: Use the latest protocol version (such as TLS 1.3), disable insecure or outdated
protocols/suites on both sides.
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More Examples about Reuse

* Previous Example: Randomness Reuse in the DSA signature => Recovery of secret key
* Why shouldn’t we reuse randomness?

» An informal principle: Security of cryptosystem comes from the secret key and the randomness

» Secret key: High entropic, the “source” of security, ...
» Randomness/nonce/salt: Independency when using the same key, Freshness, ...
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More Examples about Reuse

 Example: Reuse randomness in the Hashed ElGamal Encryption

ElGamalEnc(public_key = g*, plaintext = m)

/1 (G, g,q): A g-order group G with a generator g

1 r <3 Zq
2. co=9"
3 ¢cg=H@")dm

4.

Return (cq, ¢1)

D
BN

Encrypt m and m’ using
the same randomness

gr’H(gxr) @ m

g H@g")dm

\ 4

v




More Examples about Reuse

 Example: Reuse randomness in the Hashed ElGamal Encryption

ElGamalEnc(public_key = g*, plaintext = m)
/1 (G, g,q): A g-order group G with a generator g
1 r <3 Zq
2. ¢cp=g9"

3 ¢cg=H@")dm
4. Return (cg,cq)

-, g H(@G")dm
) > m'@m
g H(@*") @m'
Encrypt m and m’ using >
the same randomness
UNIKASSEL
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More Examples about Reuse

 Examples: Reuse salt in OPAQUE
* Suppose that Alice’s password is pw,, Bob’s password is pwg, and the password files stored in the
server are:

Username: Bob Username: Alice
salt: r salt: T
enc_AKE_keys: AEAD;,,_(...) enc_AKE_keys: AEAD,,, (...)

* |sitsecure? Why?




More Examples about Reuse

 Examples: Reuse salt in OPAQUE

* Suppose that Alice’s password is pw,, Bob’s password is pwg, and the password files stored in the
server are:

Username: Bob Username: Alice
salt: r salt: r
enc_AKE_keys: AEAD;,,_(...) enc_AKE_keys: AEAD,,, (...)
* Potentialrisks: If Alice’s password file is leaked, then the adversary can launch offline attacks to
recover Bob password from its OPAQUE protocol messages... Bob
o p—
AEAD,,, (... ) -

o -
@ ““(‘L;aigg;)""' -7 (Eavesdropping)
Try allpw (and rw = H(pw, h(pw)")) such that

AEAD.Dec does not output rejection...
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More Examples about Reuse

* Other examples:

 Reuse randomness in Schnorr/Schnorr-like signature schemes...
* Reuse of IV inthe AES-GCM mode, or short IV...




Side-Channel Attacks

Side-channel information: By-product information when the system runs cryptographic algorithms.
» E.g., time, power consumption, cache access patterns, ...

Example:
* Timing Attacks
* Cache Attacks

An Example of Timing Attack: A website checks a user’s password character by character,
returning an error as soon as it finds the first mismatch.

Lessons: Use constant-time algorithms, masking sensitive operations, ...
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Towards Post-Quantum Cryptography

* All previous attack examples are about wrong implementations of cryptographic algorithms, but
not about the algorithms themselves...

» Example: Breaking the ElGamal encryption => Solving DH problems...




Towards Post-Quantum Cryptography

* All previous attack examples are about wrong implementations of cryptographic algorithms, but
not about the algorithms themselves...

» Example: Breaking the ElGamal encryption => Solving DH problems...

* Modern cryptography builds on hardness assumptions:

 ElGamal encryption, DHKE, DSA, TLS 1.3, and others all rely on the hardness of Diffie-Hellman or RSA
problems...

* We assume these problems are hard to solve (i.e., there is no polynomial-time algorithm).

* What if these assumptions are broken?
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Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
(

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024




Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
(

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

Shor’s algorithm
(quantum)

Peter Williston Shor
(image from Wikipedia)




Towards Post-Quantum Cryptography

ALL MODERN DIGITAL
INFRASTRUCTURE
Hardness of
DH/RSA
L problems
|
|

Source: xkcd/2347 and Nadia
Heninger’s talk in PKC2024

£

Shor’s algorithm

Recent progress in

Quantum Computers/Mechanisms...




Impact on Cryptography

* |In the pre-quantum world...

* Symmetric-key cryptography
 Hash functions: SHA2, SHAS3,...
* Symmetric-key (authenticated) encryption: AES, AES-GCM...
« KDF, MAC, PRNG,...




Impact on Cryptography

* |In the pre-quantum world...

* Symmetric-key cryptography
 Hash functions: SHA2, SHAS3,...
* Symmetric-key (authenticated) encryption: AES, AES-GCM...
« KDF, MAC, PRNG,...

* Basis of confidence: Extensively studied, publicly reviewed, ...
* (Orwe could say that they themselves are assumptions...)




Impact on Cryptography

* |In the post-quantum world...

* Symmetric-key cryptography
 Hash functions: SHA2, SHAS3,...
* Symmetric-key (authenticated) encryption: AES, AES-GCM...

* KDF, MAC, PRNG,...

* Basis of confidence: Extensively studied, publicly reviewed, ...

Grover Search:
O(N) » O(WN)
(N = |key space])

O

O

o




Impact on Cryptography

* |In the post-quantum world...

Symmetric-key cryptography
 Hash functions: SHA2, SHAS3,...
* Symmetric-key (authenticated) encryption: AES, AES-GCM...
« KDF, MAC, PRNG,...

Grover Search:

0(N) - O(VN)
(N = |key space])

O

Basis of confidence: Extensively studied, publicly reviewed, ... O
Solution: Double the key size... (not always true) ) @




Impact on Cryptography

* |In the pre-quantum world...

* Public-key cryptography
* Key exchange: (EC)DHKE, TLS, ...
* Public-key encryption: ElGamal encryption, DHIES, ...
e Signature: DSA, RSA, ...

 Basis of confidence:
* Provable security (e.g., rigorous security proofs, ...)
* Well-studied and publicly reviewed hardness assumptions

e Classical assumptions: DH (from discrete-log), RSA (from factoring), ...




Impact on Cryptography

* |In the post-quantum world...

* Public-key cryptography
* Key exchange: (EC)DHKE, TLS, ...
* Public-key encryption: ElGamal encryption, DHIES, ...
e Signature: DSA, RSA, ...

* Basis of confidence:
* Provable security (e.g., rigorous security proofs, ...)
* Well-studied and publicly reviewed hardness assumptions
e Classical assumptions: DH (from discrete-log), RSA (from factoring), ...

N 5 0(log(N)),
where N = group/ modulus size

Quantum Fourier transform (QFT):
solve DLOG and Factoring.




Impact on Cryptography

* |In the post-quantum world...

* Public-key cryptography
* Key exchange: (EC)DHKE, TLS, ...
* Public-key encryption: ElGamal encryption, DHIES, ...
e Signature: DSA, RSA, ...

* Basis of confidence:
* Provable security (e.g., rigorous security proofs, ...)
* Well-studied and publicly reviewed hardness assumptions

A - ™) ~Ara—dieaasaratra - » A A 1A S

* New assumptions are needed.

N 5 0(log(N)),
where N = group/ modulus size

Quantum Fourier transform (QFT):
solve DLOG and Factoring.




Post-quantum Assumptions

* Assumptions that are believed to be quantum-secure:
* Lattice-based
* |sogeny-based
* Code-based




Post-guantum Assumptions

* New Direction: Post-Quantum Cryptography

* Cryptographic algorithms run on classical computers, but remain secure against future
quantum computers...

» Still follow the methodology of modern cryptography: Assumptions => Schemes.

* Hardness Assumptions even against quantum adversaries:
e Lattices (Crystal-Kyber/ML-KEM, Crystal-Dilithium/ML-DSA)
* |sogeny (of Elliptic Curves)
* Code-based
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Post-quantum Assumptions

* We have implemented some post-quantum cryptosystems (Homework 2)...
« PQ-TLS
e KEM-TLS
* Both are based on ML-KEM (Kyber) and ML-DSA (Dilithium)




Transition from Pre-Quantum to Post-Quantum

* Should we immediately change everything to be post-quantum?




Transition from Pre-Quantum to Post-Quantum

* Should we immediately change everything to be post-quantum?

* Efficiency of classical algorithms v.s. post-quantum algorithms: (e.g., ECDSA v.s. CRYSTALS-Dilithium)

sk size ~32B ~1.3KB
pk size ~32B ~2.5KB
signature size ~64B ~2.5KB
Running time t 10~100*t




Transition from Pre-Quantum to Post-Quantum

Should we immediately change everything to be post-quantum?

Efficiency of classical algorithms v.s. post-quantum algorithms: (e.g., ECDSA v.s. CRYSTALS-Dilithium)

sk size ~32B ~1.3KB
pk size ~32B ~2.5KB
signature size ~64B ~2.5KB
Running time t 10~100*t

Studies on classical cryptography: since 1970s

Large-scale studies on post-quantum cryptography: since 2010s
 SIDH, a primitive that was believed to be post-quantum secure, was broken...
* Who is the next one?




Transition from Pre-Quantum to Post-Quantum

* Should we wait until the first large-scale quantum computer appears?

* “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)




Transition from Pre-Quantum to Post-Quantum

* Should we wait until the first large-scale quantum computer appears?

* “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)

. TLS 1.3 Server
g”, client_nonce

@ g, server_nonce @

111111
X 4Y
g ’g 5. X
----------- - J@gE o
Trrrnri

A

A




Transition from Pre-Quantum to Post-Quantum

* Should we wait until the first large-scale quantum computer appears?

 “Harvest Now, Decrypt Later”: The adversary stores today’s encrypted data (harvest now). In the future,
quantum computers decrypt this data (decrypt later)

Solution:
g%, client_nonce TLS 1.3 Server Add PQ-secure component so that the
@ - > @ adversary cannot decrypt the TLS key...
) g, server_nonce
‘ L% oY
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Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA




Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

The ECDHInTLS 1.3 A simple KE
based on Kyber KEM

g”, client_nonce (epk, esk) < KeyGen epk
> >
g”, server_nonce, ... c (c,K) < Encaps(epk)

<
«

K <« Decaps(esk, c)‘

* Advantages: Classical security provided by ECDH + Quantum security provided by Kyber




Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

(epk,esk) < KeyGen g%, epk, client_nonce

»

g”, c,server_nonce, ... (c¢,K) < Encaps(epk)

<
«

K < Decaps(esk,c)

Keys = KeySchedule(...|| g*” || K ||...)




Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

(epk,esk) < KeyGen g%, epk, client_nonce

»

g”, c, server_nonce, ... (¢, K) < Encaps(epk)

<
«

K < Decaps(esk,c)

Keys = KeySchedule(...|| g* [| K ||...)

K insecure => Keys remain secure!




Transition from Pre-Quantum to Post-Quantum

* Hybrid Cryptography
e Classical algorithms + post-quantum algorithms
* Example: ECDH + ECDSAINTLS 1.3 -> (ECDH + Kyber) + ECDSA

Modify the KE part in TLS 1.3:
ECDH+ Kyber KEM

(epk,esk) < KeyGen g%, epk, client_nonce

»

g”, c, server_nonce, ... (¢, K) < Encaps(epk)

<
«

K < Decaps(esk,c)

Keys = KeySchedule(...|| g* [| K ||...)

g*” insecure in the future => Keys remain secure!




Transition from Pre-Quantum to Post-Quantum

* Some other PQ replacements (or need to be replaced):
 X3DH -> PQXDH -> (fully PQ-secure X3DH-style protocols...)
* PQ-secure Password-based authentication protocols
* PQ-secure OPRF




Transition from Pre-Quantum to Post-Quantum

* Some other PQ replacements (or need to be replaced):
 X3DH -> PQXDH -> (fully PQ-secure X3DH-style protocols...)
 PQ-secure Password-based authentication protocols
* PQ-secure OPRF

Many open problems!
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