Cryptography Engineering

* Lecture 2 (Oct 29, 2025)

* Today’s notes:
* Review the Rust example code
* DH handshake
* Man-in-the-middle attacks

* Today’s coding tasks:
* Derive a secret key for AEAD via DH handshake
* Man-in-the-Middle attacks on DHKE

NI KASSEL
E

U
\" RSITAT



Code Review

e Some useful notes:

* Modular design
* Reusability




Diffie-Hellman Key Exchange

e Group (Mathematics): (G, +)

* Associativity:a,b,c€ G = (a+b)+c=a+ (b+¢)
Identity: de € G s.t. VaeG = e+a=a
Inverse:Va € G,db e Gst.a+b=c¢

Example 1: (R, +)is agroup, but (Z, X)is not
Example 2: (R, X) is nota group (why?), but (R*, X) is agroup
Quick question: ({1,2,3,...,q}, X mod q) is agroupifandonlyif g is

* In cryptography, we usually use finite groups to build cryptosystems.
* Generator and order
* Elliptic Curve Groups

NI KASSEL
E

U
\" RSITAT



Alice

Q

X g Lg

ikmAlice =Y*

Diffie-Hellman Key Exchange




Diffie-Hellman Key Exchange

Alice Bob
X < Zg X =g* y < L
—
Y =g7
—
tkmajice = Y™ tkmpop = X¥
K = HKDF (ikmgjjce) K = HKDF (ikmg,p)

NI KASSEL
E

U
\" RSITAT



Diffie-Hellman Key Exchange

Alice Bob
ok ok
K = HKDF (ikmajice) K = HKDF (ikmggp)

AEAD(K, some messages)
—

AEAD(K, some messages)
—

NI KASSEL
E

U
\" RSITAT



MitM attacks on DHKE

Both Xand Y are not
authenticated.
Namely, Xand Y are not
binding to their owners

* Diffie-Hellman Key Exchange
Alice

Q

o
X < Zg X =g* y < L
—
Y =g7
—
Katice = Y™ Kgop = X7
UNIKASSEL
VERSITAT



MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary
X g Zq X =g
—

Bob




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
ok ok
X g Zq X =g

When analyzing security,
we assume that the
adversary can
control the network




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary
X g Zq X =g
—

Bob




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
) o
X g Lg X =g X' = g~
—- ——-
x' g L




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice

a

X g Lg

Adversary

Kgop = XY




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice

Q

X g Lg

Adversary

Kgop = XY

NI KASSEL
E

U
\" RSITAT



MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
X g Lg X=g" X' =g~ y < Lg
——- ——-
x' g L
YI — gyl y’ (—$ Zq Y — gy
Kpjjee = V' S —— Kgop, = XY

NI KASSEL
E

U
\" RSITAT



MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
x(_$Zq X:gx X’:gx’ y<—$Zq
—————— ——————
x' g L
YI — gyl y’ (—$ Zq Y — gy
Kplice = V' S Kgop = X'

K'gop =Y

K,Alice =X
UNI KASSEL
VERSITAT



MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
X g Lg X=g" X' =g~ y < Lg
— —
x' g L
YI — gyl y’ (—$ Zq Y — gy
Kpjjee = V' S , , Kgop, = XY
. K'gop =71 .
Communicate % _ x' Communicate
with K’ A1 Alice = with K’
<IIIIIIIIIIIAIl=EeIII 4 IIIIIIIIIII BIE)‘IbIII’
UNI KASSEL
VERSITAT



Alice

a

(pkA) SkA)

MitM attacks (in General)

* Transporting (malicious) public keys

(pk,A1 Sk,A)

pk',

—

Communicate

Bob

pk'y




MitM attacks (in General)

* Transporting (malicious) public keys How can we
Alice prevent MitM Bob
@ ':: attacks? @
(Pka, ska) pk, (pk' 4, sk'4) pk', pk' s
— —
Communicate Communicate
with pk with pk’,
Quresnannnnnnnnnns > Quresnannnnnnnnnns >




Digital Signature

e Signature Schemes

@)

)

) o
(pk, sk) m (message) pk
Slgnlng o (m, o) Verification acgept
algorithm algorithm /reject
UNIKASSEL
VERSITAT



Digital Signature

e Signature Schemes

o
2 e

(pk, sk) m (message) pk

Slgnlng o (m, o) Verification accept
algorithm algorithm /reject

* Security: Unforgeability
* Unable to forge a valid signature on any message without sk

NI KASSEL
E

U
\" RSITAT



Sighed DH Key Exchange (Next Lecture)

* Use signature to avoid MitM attacks on DHKE:

Alice Bob
(pkA'SkA) (pkB'SkB)
X = qg”*

X <3 Lg g Y < Lg

Kalice = Y* Kpop = XY




Sighed DH Key Exchange (Next Lecture)

* Use signature to avoid MitM attacks on DHKE:

Alice Bob
(pkA'SkA) (pkB'SkB)
X =g*

Y = gy’ Op = SignSkB(X' Y)
—

Verify o oy = Signgk,(X,Y)

Kpjice =Y* e ——— Kgop = X7




Digital Signature

* Other standard properties of Digital Signature:
// Verify the identity...
* Publicly verifiable // Everyone with pk can verify the signature...

 Authentication

* Non-repudiation // A party cannot deny having sent or sighed a message...

* One of the most important applications: Digital Certificate




Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key
* Securely distribute public keys
* |Issued by CA (Certificate Authority)

% @ (spk, ssk) @

CA
Server

NI KASSEL
E

U
\" RSITAT



Digital Certificate

* Certificate: A signature generated by a trusted party (In short)

* Verifies an ID and binds it to a public key

* Securely distribute public keys
* |Issued by CA (Certificate Authority)

@ (spk, ssk)

CA
Server

-

\_

The pk of CAis distributed
in a secure way in advance,
e.g., pre-installed in the operating
system or browser

~N

J




Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key
* Securely distribute public keys
* |Issued by CA (Certificate Authority)

@ (Registration in @ (spk, ssk) @

() a secure way) ()
spk D CA spk
(pka, sky), cert|pk,] Server
UNIKASSEL
VERSITAT



Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key
* Securely distribute public keys
* |Issued by CA (Certificate Authority)

@ @ (spk, ssk) @

spk CA spk
(pka, sky), cert|pk,] Server

pky, cert|pk,]

v

NI KASSEL
E

U
\" RSITAT



Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key

* Securely distribute public keys
* |Issued by CA (Certificate Authority)

a

spk
(pkA, SkA)i cert [pkA]

@ (spk, ssk)

CA
Server

pky, cert|pk,]

Verify cert|[pk,| using spk
If valid, accept pky

NI KASSEL
E

U
\" RSITAT



Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key
* Securely distribute public keys
* |Issued by CA (Certificate Authority)

@ @ (spk, ssk) @

spk CA spk
(Dka, ska), cert[pk,] Server pk,, cert[pk,]

(Communicate using pky)

NI KASSEL
ERSITAT



Digital Certificate

* What information does a certificate include?
» X.509 standard: defines the format of public key certificates.

J
O)

{ . . . . 1
I Alice’s identity and Alice’s pk !
@ E * Issuer : m
! « Supporting algorithms i (pky, sky)
CA server | * Valid period, Serial Number, ... | cert[pk,]
\ 1
4
(spk, ssk) M 1 ---------------------- -
( Signin ]
. gning v g

L algorithm J

NI KASSEL
E

U
\" RSITAT



Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

NI KASSEL
E

U
\" RSITAT



Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

= 8 =

Root CA Intermediate CA 1 Intermediate CA 2
(rpk,rsk) (pky,skq) (pk,, sk;)
cert|rpk]




Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

= 8 =

Root CA Intermediate CA 1 Intermediate CA 2
(rpk,rsk) (pky,skq) (pk,, sk;)

cert[rpk
[rpk] « Pre-installed pk
* Self-signed cert




Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

= 8 =

Root CA Intermediate CA 1 Intermediate CA 2
(rpk, rsk) — > (pk1,skq) (pky, sky)
cert|rpk] Slgning cert|pk]




Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

= 8 =

Root CA Intermediate CA 1 Intermediate CA 2
(rpk,rsk) . > (pky,skq) . > (pky, sk;) -
cert|rpk] signing cert|pk] signing cert|pk,] signing

cert|




Digital Certificate

e Root Certificate and Certificate Chains

= B

Root CA Intermediate CA 1
(rpk,rsk), cert[rpk]  (pkq,skq), cert[pk,]

=

Intermediate CA 2
(pky, sky), cert[pk,]

cert|

cert|




Digital Certificate

e Root Certificate and Certificate Chains

= B

Root CA Intermediate CA 1
(rpk,rsk), cert[rpk]  (pkq,skq), cert[pk,]

=

Intermediate CA 2
(pky, sky), cert[pk,]

.Uthis certificate is
signed by CA 2”...

rpk

cert|

cert|




Digital Certificate

e Root Certificate and Certificate Chains

= B

Root CA Intermediate CA 1
(rpk,rsk), cert[rpk]  (pkq,skq), cert[pk,]

=

Intermediate CA 2
(pky, sky), cert[pk,]

cert|

)

]

cert[pkl]w%] \cert[ ]




Digital Certificate

e Root Certificate and Certificate Chains

= B

Root CA Intermediate CA 1
(rpk,rsk), cert[rpk]  (pkq,skq), cert[pk,]

-

Verify them one by one
(until verifying the cert
issued by Root CA)

\_

=

Intermediate CA 2
(pky, sky), cert[pk,]

cert|pk]

cert|pk,] cert|




Exercise

1. Export a certificate from a website and write a simple program to read the certificate.

2. Find and export a pre-installed certificate on your laptop or PC (via browser) and use
your program to read the certificate.

3. Implement the DH key exchange and derive a key using the shared DH secret.

4. Implement the man-in-the-middle attacks on the DH key exchange.

UNIKASSEL
VERSITAT



Further Reading

DigiCert (one of the largest and most widely trusted CAs): https://www.digicert.com/

Elliptic Curves: https://andrea.corbellini.name/2015/05/17/elliptic-curve-

cryptography-a-gentle-introduction/
P-256 (secp256r1) curve: https://neuromancer.sk/std/nist/P-256

The X.509 standard: https://en.wikipedia.org/wiki/X.509
Public Key Infrastructure (PKI): https://en.wikipedia.org/wiki/Public_key infrastructure



https://www.digicert.com/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
https://neuromancer.sk/std/nist/P-256
https://neuromancer.sk/std/nist/P-256
https://neuromancer.sk/std/nist/P-256
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Public_key_infrastructure

	Cryptography Engineering 
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41

