Cryptography Engineering

* Lecture 2 (Oct 29, 2025)

* Today’s notes:
* Review the Rust example code
* DH handshake
* Man-in-the-middle attacks

* Today’s coding tasks:
* Derive a secret key for AEAD via DH handshake
* Man-in-the-Middle attacks on DHKE
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Code Review

e Some useful notes:

* Modular design
* Reusability




Diffie-Hellman Key Exchange

e Group (Mathematics): (G, +)

* Associativity:a,b,c€ G = (a+b)+c=a+ (b+¢)
Identity: de € G s.t. VaeG = e+a=a
Inverse:Va € G,db e Gst.a+b=c¢

Example 1: (R, +)is agroup, but (Z, X)is not
Example 2: (R, X) is nota group (why?), but (R*, X) is agroup
Quick question: ({1,2,3,...,q}, X mod q) is agroupifandonlyif g is

* In cryptography, we usually use finite groups to build cryptosystems.
* Generator and order
* Elliptic Curve Groups
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Alice

Q

X g Lg

ikmAlice =Y*

Diffie-Hellman Key Exchange




Diffie-Hellman Key Exchange

Alice Bob
X < Zg X =g* y < L
—
Y =g7
—
tkmajice = Y™ tkmpop = X¥
K = HKDF (ikmgjjce) K = HKDF (ikmg,p)
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Diffie-Hellman Key Exchange

Alice Bob
ok ok
K = HKDF (ikmajice) K = HKDF (ikmggp)

AEAD(K, some messages)
—

AEAD(K, some messages)
—
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MitM attacks on DHKE

Both Xand Y are not
authenticated.
Namely, Xand Y are not
binding to their owners

* Diffie-Hellman Key Exchange
Alice

Q

o
X < Zg X =g* y < L
—
Y =g7
—
Katice = Y™ Kgop = X7
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MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary
X g Zq X =g
—

Bob




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
ok ok
X g Zq X =g

When analyzing security,
we assume that the
adversary can
control the network




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary
X g Zq X =g
—

Bob




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
) o
X g Lg X =g X' = g~
—- ——-
x' g L




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice

a

X g Lg

Adversary

Kgop = XY




MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice

Q

X g Lg

Adversary

Kgop = XY
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MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
X g Lg X=g" X' =g~ y < Lg
——- ——-
x' g L
YI — gyl y’ (—$ Zq Y — gy
Kpjjee = V' S —— Kgop, = XY
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MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
x(_$Zq X:gx X’:gx’ y<—$Zq
—————— ——————
x' g L
YI — gyl y’ (—$ Zq Y — gy
Kplice = V' S Kgop = X'

K'gop =Y

K,Alice =X
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MitM attacks on DHKE

* Diffie-Hellman Key Exchange

Alice Adversary Bob
X g Lg X=g" X' =g~ y < Lg
— —
x' g L
YI — gyl y’ (—$ Zq Y — gy
Kpjjee = V' S , , Kgop, = XY
. K'gop =71 .
Communicate % _ x' Communicate
with K’ A1 Alice = with K’
<IIIIIIIIIIIAIl=EeIII 4 IIIIIIIIIII BIE)‘IbIII’
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Alice

a

(pkA) SkA)

MitM attacks (in General)

* Transporting (malicious) public keys

(pk,A1 Sk,A)

pk',

—

Communicate

Bob

pk'y




MitM attacks (in General)

* Transporting (malicious) public keys How can we
Alice prevent MitM Bob
@ ':: attacks? @
(Pka, ska) pk, (pk' 4, sk'4) pk', pk' s
— —
Communicate Communicate
with pk with pk’,
Quresnannnnnnnnnns > Quresnannnnnnnnnns >




Digital Signature

e Signature Schemes

@)

)

) o
(pk, sk) m (message) pk
Slgnlng o (m, o) Verification acgept
algorithm algorithm /reject
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Digital Signature

e Signature Schemes

o
2 e

(pk, sk) m (message) pk

Slgnlng o (m, o) Verification accept
algorithm algorithm /reject

* Security: Unforgeability
* Unable to forge a valid signature on any message without sk
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Sighed DH Key Exchange (Next Lecture)

* Use signature to avoid MitM attacks on DHKE:

Alice Bob
(pkA'SkA) (pkB'SkB)
X = qg”*

X <3 Lg g Y < Lg

Kalice = Y* Kpop = XY




Sighed DH Key Exchange (Next Lecture)

* Use signature to avoid MitM attacks on DHKE:

Alice Bob
(pkA'SkA) (pkB'SkB)
X =g*

Y = gy’ Op = SignSkB(X' Y)
—

Verify o oy = Signgk,(X,Y)

Kpjice =Y* e ——— Kgop = X7




Digital Signature

* Other standard properties of Digital Signature:
// Verify the identity...
* Publicly verifiable // Everyone with pk can verify the signature...

 Authentication

* Non-repudiation // A party cannot deny having sent or sighed a message...

* One of the most important applications: Digital Certificate




Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key
* Securely distribute public keys
* |Issued by CA (Certificate Authority)

% @ (spk, ssk) @

CA
Server
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Digital Certificate

* Certificate: A signature generated by a trusted party (In short)

* Verifies an ID and binds it to a public key

* Securely distribute public keys
* |Issued by CA (Certificate Authority)

@ (spk, ssk)

CA
Server

-

\_

The pk of CAis distributed
in a secure way in advance,
e.g., pre-installed in the operating
system or browser

~N

J




Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key
* Securely distribute public keys
* |Issued by CA (Certificate Authority)

@ (Registration in @ (spk, ssk) @

() a secure way) ()
spk D CA spk
(pka, sky), cert|pk,] Server
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Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key
* Securely distribute public keys
* |Issued by CA (Certificate Authority)

@ @ (spk, ssk) @

spk CA spk
(pka, sky), cert|pk,] Server

pky, cert|pk,]

v
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Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key

* Securely distribute public keys
* |Issued by CA (Certificate Authority)

a

spk
(pkA, SkA)i cert [pkA]

@ (spk, ssk)

CA
Server

pky, cert|pk,]

Verify cert|[pk,| using spk
If valid, accept pky
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Digital Certificate

* Certificate: A signature generated by a trusted party (In short)
* Verifies an ID and binds it to a public key
* Securely distribute public keys
* |Issued by CA (Certificate Authority)

@ @ (spk, ssk) @

spk CA spk
(Dka, ska), cert[pk,] Server pk,, cert[pk,]

(Communicate using pky)
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Digital Certificate

* What information does a certificate include?
» X.509 standard: defines the format of public key certificates.

J
O)

{ . . . . 1
I Alice’s identity and Alice’s pk !
@ E * Issuer : m
! « Supporting algorithms i (pky, sky)
CA server | * Valid period, Serial Number, ... | cert[pk,]
\ 1
4
(spk, ssk) M 1 ---------------------- -
( Signin ]
. gning v g

L algorithm J
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Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...
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Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

= 8 =

Root CA Intermediate CA 1 Intermediate CA 2
(rpk,rsk) (pky,skq) (pk,, sk;)
cert|rpk]




Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

= 8 =

Root CA Intermediate CA 1 Intermediate CA 2
(rpk,rsk) (pky,skq) (pk,, sk;)

cert[rpk
[rpk] « Pre-installed pk
* Self-signed cert




Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

= 8 =

Root CA Intermediate CA 1 Intermediate CA 2
(rpk, rsk) — > (pk1,skq) (pky, sky)
cert|rpk] Slgning cert|pk]




Digital Certificate

* Root Certificate and Certificate Chains
* Hierarchical sequence of certificates
* Trace the authenticity of a certificate back to a trusted Root CA
* Only root certificates need to be pre-installed...

= 8 =

Root CA Intermediate CA 1 Intermediate CA 2
(rpk,rsk) . > (pky,skq) . > (pky, sk;) -
cert|rpk] signing cert|pk] signing cert|pk,] signing

cert|




Digital Certificate

e Root Certificate and Certificate Chains

= B

Root CA Intermediate CA 1
(rpk,rsk), cert[rpk]  (pkq,skq), cert[pk,]

=

Intermediate CA 2
(pky, sky), cert[pk,]

cert|

cert|




Digital Certificate

e Root Certificate and Certificate Chains

= B

Root CA Intermediate CA 1
(rpk,rsk), cert[rpk]  (pkq,skq), cert[pk,]

=

Intermediate CA 2
(pky, sky), cert[pk,]

.Uthis certificate is
signed by CA 2”...

rpk

cert|

cert|




Digital Certificate

e Root Certificate and Certificate Chains

= B

Root CA Intermediate CA 1
(rpk,rsk), cert[rpk]  (pkq,skq), cert[pk,]

=

Intermediate CA 2
(pky, sky), cert[pk,]

cert|

)

]

cert[pkl]w%] \cert[ ]




Digital Certificate

e Root Certificate and Certificate Chains

= B

Root CA Intermediate CA 1
(rpk,rsk), cert[rpk]  (pkq,skq), cert[pk,]

-

Verify them one by one
(until verifying the cert
issued by Root CA)

\_

=

Intermediate CA 2
(pky, sky), cert[pk,]

cert|pk]

cert|pk,] cert|




Exercise

1. Export a certificate from a website and write a simple program to read the certificate.

2. Find and export a pre-installed certificate on your laptop or PC (via browser) and use
your program to read the certificate.

3. Implement the DH key exchange and derive a key using the shared DH secret.

4. Implement the man-in-the-middle attacks on the DH key exchange.
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Further Reading

DigiCert (one of the largest and most widely trusted CAs): https://www.digicert.com/

Elliptic Curves: https://andrea.corbellini.name/2015/05/17/elliptic-curve-

cryptography-a-gentle-introduction/
P-256 (secp256r1) curve: https://neuromancer.sk/std/nist/P-256

The X.509 standard: https://en.wikipedia.org/wiki/X.509
Public Key Infrastructure (PKI): https://en.wikipedia.org/wiki/Public_key infrastructure
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