- Lectures 1 and 2 (April 23-24, 2025)
- This week:
 - Admin.
 - Overview of this module
 - Quantum state, qubit, and their linear algebra formulation

Contact Information

- Course coordinator: Prof. Jiaxin Pan
- Lecturer & TA: Runzhi Zeng
- Email:
 - jiaxin.pan@uni-kassel.de
 - runzhi.zeng@uni-kassel.de
- Office hours
 - Office: Room 2628
 - 2 pm 2:30 pm, Wednesday
 - (Please send an email in advance)
- All information is available on:
 - https://runzhizeng.github.io/QC-s25/

Time

- Summer semester 2025: 23.04.2025 24.07.2025
- 14 Weeks: Wednesday and Thursday every week
- Lecture dates:
 - April: 23, 24, 30
 - May: 01(Labor Day), 7, 8, 14-15 (Travel), 21, 22, 28-29 (Ascension)
 - June: 4, 5, 11, 12, 18, 19(Corpus Christi), 25, 26.
 - July: 2, 3, 9, 10, 16,17, 23, 24.

Format

- Wednesday 12:00 13:30:
 - Two lectures (~40min each) + 10min break
- Thursday 10:00 12:00:
 - One lecture (~45min)
 - Exercise and Q&A (~45min-1h)
 - Explanation of selected exercise questions (~15min-30min)
 - I may ask you to present your solutions
- This module involves a large amounts of calculations
 - Please bring your pen and paper (especially on Thursday!)
 - You can also bring your laptop/iPad to check the lecture notes at any time

Resources

- Lecture notes: Will be updated at https://runzhizeng.github.io/QC-s25
- Calculation Manuscripts: Would be updated at the Moodle.
- Textbooks:
 - Quantum Computation and Quantum Information by Michael Nielsen and Isaac Chuang
 - Linear Algebra and Learning from Data by Gilbert Strang
 - An Introduction to Quantum Computing by Phillip Kaye, Raymond Laflamme, and Michele Mosca.
 - Quantum Computing: A Gentle Introduction by Eleanor Rieffel and Wolfgang Polak
 - ...

Resources

Resources of other QC courses:

(Parts of this module are based on these external course materials)

- Quantum Computation and Information (Videos) by Prof. Ryan O'Donnell (Carnegie Mellon University)
- Quantum Cryptography by Prof. Qipeng Liu (UC San Diego)
- Quantum Cryptography by Prof. Mark Zhandry (Princeton University)
- Introduction to Quantum Computing by Prof. Dakshita Khurana and Prof. Makrand Sinha (University of Illinois)
- Introduction to Quantum Computing by Prof. Henry Yuen (Columbia University)
- <u>Lecture Notes of Quantum Information Science</u> by Prof. Scott Aaronson (UT Austin)

Miscellaneous:

- Qubit Zoo: "Zoo" of interesting qubits and quantum gates
- Quantum Programming (Simulated): Q# and Qiskit

Homework and Exam

- Homework: Some problem sets (notice time: 1~2 weeks).
- Exam type (Oral or written?): To be decided
- When? To be decided

What is Quantum Computing?

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

- Classical physics does not work in some cases
- -> Quantization, introduced/explained by Planck, Einstein, ...
- -> Quantum theory, formalized by Schrödinger, Heisenberg, Dirac...

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

Classical physics does not work in some cases

Classical physics:

"Light is **continuous wave** (with energy)

- \Rightarrow Shine light on the plate for a long time
- ⇒ Electrons should be emitted eventually"

- Computation based on quantum mechanics, rather than classical physics
- **Quantum mechanics:**
 - Classical physics does not work in some cases

Classical physics:

"Light is **continuous wave** (with energy)

- ⇒ Shine light on the plate for a long time
- ⇒ Electrons should be emitted eventually"

Double slit experiment: Light is a wave, or at least it behaves like a wave https://en.wikipedia.org/wiki/Double-slit_experiment

Computation based on quantum mechanics, rather than classical physics

Quantum mechanics:

Classical physics does not work in some cases

Classical physics:

"Light is **continuous wave** (with energy)

- \Rightarrow Shine light on the plate for a long time
- ⇒ Electrons should be emitted eventually"

Reality (Experiments):

- There is a threshold frequency.
 (Electrons are emitted only if the light's frequency is high enough)
- 2. The emission of electrons is "immediately", regardless of light's intensity

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

Classical physics does not work in some cases

ous wave (with energy)
the plate for a long time
uld be emitted eventually"

ents):

(Source: Wikipedia)(Electrons are emitted

2. The emission of electron

Wenn sich nämlich bei der Ausbreitung eines Lichtstrahls die Energie nicht kontinuierlich im ganzen Raum verteilt, sondern aus einzelnen, **im Raum lokalisierten Quanten**

besteht, dann erklärt das diemerkwürdigen Eigenschaften der Photoelektrizität...

Example: Photoelectric effect

metal plate

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

- Classical physics does not work in some cases
- -> Quantization, introduced/explained by Planck, Einstein, ...

Example: $E = h \cdot v$

E: Energy of the photon

h: Planck's constant

v: Frequency of the photon

(Source: Wikipedia)

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

- Classical physics does not work in some cases
- -> Quantization, introduced/explained by Planck, Einstein, ...
- -> Quantum theory, formalized by Schrödinger, Heisenberg, **Dirac**, ...

 $U|\psi
angle\langle\phi||\psi
angle=\langle\phi|\psi
angle U|\psi
angle$ (Dirac's notation)

 $i\hbar \frac{d}{dt} |\Psi(t)\rangle = \widehat{H} |\Psi(t)\rangle$ (Schrödinger equation)

(Source: Wikipedia)

Schrödinger's Cat (picture from Medium)

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$

(Heisenberg Uncertainty Principle)

(Source: Wikipedia)

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

Information Theory

- + Quantum Mechanics
- **= Quantum Computing**

. .

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

Richard Feynman

- Simulating quantum systems with classical computers is *inefficient*
- Quantum Systems/Computers are required

David Deutsch

- Deutsch's algorithm, Deutsch-Jozsa algorithm
- Quantum Turing Machine

• •

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

• • •

Information Theory

- + Quantum Mechanics
- **= Quantum Computing**

Peter Williston Shor

- Breakthrough: Shor's algorithm
- Break most of existing public-key cryptosystems
- ... which motivates "post-quantum cryptography"

Lov K. Grover

- Grover search:A Quantum search algorithm
- Significant impacts on information theory, computational complexity, cryptography, ...

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

• •

Information Theory

- + Quantum Mechanics
- **= Quantum Computing**

• • •

Advances in quantum computing

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

Information Theory

- + Quantum Mechanics
- **= Quantum Computing**

Advances in quantum computing

We are now in the NISQ era!

NISQ = Noisy Intermediate-Scale Quantum

- Not yet powerful enough to run Shor's or Grover's algorithms at scale
- But quantum hardware is scaling up!
- Quantum error correction is still needed for fault-tolerant computing

(Classical World)
(Quantum World)

00101 Classical bit(s): 01011 10110 • **0** = Low voltage (e.g., 0V)

1 = High voltage (e.g., 3.3V – 5V)

(Classical World)

(Quantum World)

00101 Classical bit(s): 01011 10110 • **0** = Low voltage (e.g., 0V)

• **1** = High voltage (e.g., 3.3V – 5V)

(Classical World)

(Quantum World)

Single quantum bit (qubit)
represented by Bloch sphere
Superposition of 0 and 1!

superconducting qubits (IBM)

(Classical World)
(Quantum World)

$$N = pq$$
 $(\approx 2^{1024})$
 $p \neq q$ are big primes
 p, q

Using Shor's algorithm

(Though no existing quantum computer can run this yet.)

- What makes Quantum Computing powerful?
 - Quantum **Superposition Qubits**
 - Unitary quantum gates instead of logic gates
 - Quantum Entanglement
 - Quantum Measurement
 - Quantum algorithms utilizing quantum properties...

Impact on Computational Complexity

- Exponential speedups for some specific problems
 - Factoring, discrete logarithm, or more generally, hidden (finite abelian) subgroup problem
- Polynomial speedups for generic search problems
 - Grover search
 - Improve some lower bounds

Impact on Computational Complexity

- Exponential speedups for some specific problems
 - Factoring, discrete logarithm, or more generally, hidden (finite abelian) subgroup problem
- Polynomial speedups for generic search problems
 - Grover search
 - Improve some lower bounds
- Quantum Computers ≠ More "Computable"
 - They cannot solve uncomputable problems (e.g., the halting problem)
- Quantum Computers ≠ Always more efficient
 - No known advantage in many problems (e.g., Traveling Salesman Problem)

Overall Goals

- Main topics:
 - Quantum mechanics and its linear algebra formulation
 - Entanglement and Measurement
 - Quantum Algorithms:
 - Described by quantum gates/circuits, unitaries
 - Quantum "parallelism" evaluation on superposition
 - Applications of quantum algorithms QKD, QFT, search, ...
 - Quantum Information
 - Quantum Programming (TBD)?

Overall Goals

- After completing this module, you should be able to:
 - Explain the fundamental principles of quantum computing (QC) and basic quantum mechanics.
 - **Use** the relevant linear algebra (including qubit representations and quantum gates) to formalize quantum computing notions and perform **basic calculations**.
 - **Describe and apply** quantum algorithms such as the Quantum Fourier Transform and Grover's search algorithm.
 - Design some simple quantum circuits/algorithms based on the algorithms you learned
 - Read and understand introductory research papers on quantum computing and cryptography.

We do not know where • is...
Or, • is in "superposition"...

No-cloning

Measurement

Measurement

Measurement

The state of the composite system:

$$|\psi\rangle=|\phi_1\rangle\otimes|\phi_2\rangle\otimes|\phi_3\rangle\otimes\cdots\otimes|\phi_n\rangle$$
, \otimes : Tensor product

The state of the composite system:

$$|\psi\rangle=|\phi_1\rangle\otimes|\phi_2\rangle\otimes|\phi_3\rangle\otimes\cdots\otimes|\phi_n\rangle$$
, \otimes : Tensor product

Examples:

$$|0\rangle \otimes |1\rangle \otimes |1\rangle \otimes |1\rangle = |0111\rangle, \ |1\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle = |10101\rangle$$

$$|0\rangle \otimes |1\rangle \otimes (\alpha |0\rangle + \beta |1\rangle) \otimes |1\rangle, |0\rangle \otimes |1\rangle \otimes \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |1\rangle$$

Entanglement

 $|\psi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$

Entanglement

Entanglement

Let $f: \{0,1\} \rightarrow \{0,1\}$ be a classical bit function:

The "quantum version" of f:

Reversible Computation

Quantum Gates and Algorithms

Quantum Information – Entropy and Randomness

How much "randomness" does it provide?

Quantum Information - Distinguishability

Thursday's Topic

• Quantum state, qubit, and their linear algebra formulation

• Bring your **pen** and **paper**

- A qubit describes the quantum state of a quantum system
- Abstracted as a mathematical object (i.e., ignore their physical meanings...)
- Two "basic" states $|0\rangle$, $|1\rangle$
 - Dirac (Bra-ket) notations
 - In some research papers, |) is also called a quantum register
- We describe the **superposition** state of the system using the qubit:

$$|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$$

• The numbers α and β are complex number and $|\alpha|^2 + |\beta|^2 = 1$

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

• The numbers α and β are complex number and $|\alpha|^2 + |\beta|^2 = 1$

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$$

• The numbers α and β are complex number and $|\alpha|^2 + |\beta|^2 = 1$

Superposition (for single qubit, informal): $|\phi\rangle$ cannot be written as either $|0\rangle$ or $|1\rangle$

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

• The numbers α and β are **complex number** and $|\alpha|^2 + |\beta|^2 = 1$

A quick recap of complex numbers \mathbb{C} :

- A complex number $\alpha \in \mathbb{C}$ can be written as $\alpha = a + bi$, where a, b are real numbers, and $i = \sqrt{-1}$
- If $\alpha \in \mathbb{C}$ and $\alpha = a + bi$, then we write its **conjugate** as $\alpha^* = a bi$
- We write α 's **norm** as $|\alpha| = |\sqrt{\alpha^2 + b^2}|$. We always have $|\alpha| = |\alpha^*| = |\sqrt{\alpha\alpha^*}|$
- If $|\alpha| = 1$, then α can also be written as $\alpha = \cos \theta + i \sin \theta$ for some θ .
- By Euler's formula, $\pmb{\alpha} = \cos \pmb{x} + \pmb{i} \sin \pmb{x} = \pmb{e^{ix}}$, and $|\pmb{e^{ix}}| = \pmb{1}$

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

- The numbers α and β are **complex number** and $|\alpha|^2 + |\beta|^2 = 1$
- Examples:

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \qquad \cos\theta |0\rangle + e^{i\psi}\sin\theta |1\rangle$$

Qubit as a unit vector

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

- The numbers α and β are **complex number** and $|\alpha|^2 + |\beta|^2 = 1$
- Relation between $|0\rangle$ and $|1\rangle$:
 - They should be "easy" to distinguish
 - Linear algebra representation:

$$|0\rangle \coloneqq \begin{bmatrix} 1 \\ 0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Qubit as a unit vector

Some linear algebra:

- Focus on vector spaces over ${\mathbb C}$
- Linear (in)dependence, basis, orthonormal basis, transpose, adjoint, ...

$$|0\rangle\coloneqq\begin{bmatrix}1\\0\end{bmatrix}, \langle 0|\coloneqq[1^*\ 0^*](=[1\ 0]),$$
 or more generally, if $|\psi\rangle=\begin{bmatrix}\alpha\\\beta\end{bmatrix}$, then $|\psi\rangle=[\alpha^*\ \beta^*]$

- We call $|\psi\rangle$ a "**ket**" and $\langle\psi|$ a "**bra**"
- Inner product using Dirac (Bra-ket) notations: $\langle \phi | \psi \rangle$
- Easy to see $\langle 0|1\rangle = \langle 1|0\rangle = 0$ and $\langle 0|0\rangle = 1 = \langle 1|1\rangle$

Qubit as a unit vector

- We describe the state of a system using the **single** qubit:
 - The numbers α and β are **complex numbers**

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$= \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$$

• A single qubit is a **unit vector over** \mathbb{C}^2

$$||\phi\rangle|| = \sqrt{\langle \phi | \phi \rangle} = \sqrt{|\alpha|^2 + |\beta|^2} = 1$$

• Change basis:

$$\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$$
 is a basis of \mathbb{C}^2 (known as **computational basis**)

$$\left\{\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}, \frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}\right\}$$
 is also a basis of \mathbb{C}^2

Qubit in Different Bases

• Single qubit:
$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2, ||\phi\rangle|| = 1$$

• Change basis: $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$ is a basis of \mathbb{C}^2 (known as the **computational basis**)

$$\left\{\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}, \frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}\right\}$$
 is also a basis of \mathbb{C}^2 .

• Let $|\mathcal{I}\rangle\coloneqq\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$ and $|\mathcal{I}\rangle\coloneqq\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$, then:

$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} | \rangle + \frac{\alpha - \beta}{\sqrt{2}} | \rangle$$

Qubit in Different Bases

• Single qubit:
$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2, ||\phi\rangle|| = 1$$

Described by different bases:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} | \rangle + \frac{\alpha - \beta}{\sqrt{2}} | \rangle$$

• What do they mean? **Depends on measurement** (will be introduced later)

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$$

• If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} | \nearrow \rangle + \frac{\alpha - \beta}{\sqrt{2}} | \searrow \rangle$$

• If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} | \rangle + \frac{\alpha - \beta}{\sqrt{2}} | \rangle$$

• If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

• If we measure $|\phi\rangle$ in the basis $\{|\nearrow\rangle, |\searrow\rangle\}$:

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} | \rangle + \frac{\alpha - \beta}{\sqrt{2}} | \rangle$$

• If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

$$|\phi\rangle = b = \begin{cases} 0 & \text{with probability } \alpha^2 \\ 1 & \text{with probability } \beta^2 \end{cases}$$

• If we measure $|\phi\rangle$ in the basis $\{|\nearrow\rangle, |\searrow\rangle\}$:

$$|\phi\rangle = \begin{bmatrix} & & \text{with probability } \left| \left(\frac{\alpha + \beta}{\sqrt{2}} \right) \right|^2 \\ & & \text{with probability } \left| \left(\frac{\alpha - \beta}{\sqrt{2}} \right) \right|^2 \end{bmatrix}$$

- Single qubit: $|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} |\rangle + \frac{\alpha \beta}{\sqrt{2}} |\rangle$
- If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

It depends on how you define 0, 1, ∠, \(\), ... (i.e., how you encode the information and define its measurement)

• If we measure $|\phi\rangle$ in the basis $\{|\nearrow\rangle, |\searrow\rangle\}$:

$$|\phi\rangle = \begin{bmatrix} & & \text{with probability } \left| \left(\frac{\alpha + \beta}{\sqrt{2}} \right) \right|^2 \\ & & \text{with probability } \left| \left(\frac{\alpha - \beta}{\sqrt{2}} \right) \right|^2 \end{bmatrix}$$

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Notes:

- 1. We may also call α and β as amplitudes
- 2. Why complex numbers? A natural way for describing waves (amplitude + phase)

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Wrong: The qubit is $|0\rangle$ with probability $|\alpha|^2$ and is $|1\rangle$ with probability $|\beta|^2$

Correct: The qubit is in a superposition before measurement – in both $|0\rangle$ and $|1\rangle$ at once

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Can we estimate α and β by measuring $|\phi\rangle$ many times?

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Can we estimate α and β by measuring $|\phi\rangle$ many times?

No. Because of collapse and no-cloning...

 $|oldsymbol{\phi}
angle$ becomes $|oldsymbol{b}
angle$ after measurement...

Inner/Outer Product

- Let $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$ be a qubit
- Inner product (to see adjoint and linearity):

$$\langle \phi | \phi \rangle = \langle \phi | \cdot | \phi \rangle = (\alpha^* \langle 0 | + \beta^* \langle 1 |) \cdot (\alpha | 0 \rangle + \beta | 1 \rangle) = \dots = 1$$

• Outer product: $|\phi\rangle\langle\phi|$

$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
, $\langle \phi | = [\alpha^* \ \beta^*]$, $|\phi\rangle\langle \phi | = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \cdot [\alpha^* \ \beta^*] = (a \ 2 \ x \ 2 \ matrix)$

Inner/Outer Product

- Let $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$ be a qubit
- Inner product (to see adjoint and linearity):

$$\langle \phi | \phi \rangle = \langle \phi | \cdot | \phi \rangle = (\alpha^* \langle 0 | + \beta^* \langle 1 |) \cdot (\alpha | 0 \rangle + \beta | 1 \rangle) = \dots = 1$$

• Outer product: $|\phi\rangle\langle\phi|$

$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
, $\langle \phi | = [\alpha^* \ \beta^*]$, $|\phi\rangle\langle \phi | = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \cdot [\alpha^* \ \beta^*] = (a \ 2 \ x \ 2 \ matrix)$

What does $|\phi\rangle\langle\phi|$ represents? A **projector** that project a vector onto the "line" (one-dimension linear space) spanned by $|\phi\rangle$.

Tensor Product

• Let \mathbf{A} $(n_1 \times m_1)$ and \mathbf{B} $(n_2 \times m_2)$ be two arbitrary complex matrices, where

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m_1} \\ \vdots & \ddots & \vdots \\ a_{n_1,1} & \cdots & a_{n_1,m_1} \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} b_{1,1} & \cdots & b_{1,m_2} \\ \vdots & \ddots & \vdots \\ b_{n_2,1} & \cdots & b_{n_2,m_2} \end{bmatrix}$$

• Then the **tensor product** of **A** and **B**, denoted as $A \otimes B$, is defined by

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{1,1} \mathbf{B} & \cdots & a_{1,m_1} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{n_1,1} \mathbf{B} & \cdots & a_{n_1,m_1} \mathbf{B} \end{bmatrix}, \text{ which is a } n_1 n_2 \times m_1 m_1 \text{ matrix}$$

Tensor Product

• Let \mathbf{A} $(n_1 \times m_1)$ and \mathbf{B} $(n_2 \times m_2)$ be two arbitrary complex matrices, where

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m_1} \\ \vdots & \ddots & \vdots \\ a_{n_1,1} & \cdots & a_{n_1,m_1} \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} b_{1,1} & \cdots & b_{1,m_2} \\ \vdots & \ddots & \vdots \\ b_{n_2,1} & \cdots & b_{n_2,m_2} \end{bmatrix}$$

• Then the **tensor product** of **A** and **B**, denoted as $A \otimes B$, is defined by

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{1,1} \mathbf{B} & \cdots & a_{1,m_1} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{n_1,1} \mathbf{B} & \cdots & a_{n_1,m_1} \mathbf{B} \end{bmatrix}, \text{ which is a } n_1 n_2 \times m_1 m_1 \text{ matrix}$$

- One can define tensor product for vectors in a natural way.
- We use tensor product to define multiple qubits

Multiple Qubits

- In the classical world, an n-bit string has 2^n possibilities (i.e., 2^n basic states)
- We define multiple qubits (in the **computational basis**) by an analogous way.

Multiple Qubits

- Multiple (n) qubits in the computational basis.
- 2^n basic states: $|00\cdots 00\rangle$, $|00\cdots 01\rangle$, $|00\cdots 10\rangle$, $|00\cdots 11\rangle$, ..., $|11\cdots 11\rangle$, where

$$|b_{n-1}b_{n-2}\cdots b_1b_0\rangle := |b_{n-1}\rangle \otimes |b_{n-2}\rangle \otimes \cdots \otimes |b_1\rangle \otimes |b_0\rangle$$

• More compact representation:

$$|0\rangle, |1\rangle, |2\rangle, |3\rangle, \dots, |2^n - 1\rangle$$

• An n-qubit states: A superposition of the 2^n basic states (also a unit vector over \mathbb{C}^{2^n})

$$|\boldsymbol{\phi}\rangle = \sum_{i=0}^{2^n-1} \alpha_i |i\rangle,$$

where $\alpha_i \in \mathbb{C}$ and $\sum_{i=0}^{2^n-1} |\alpha_i|^2 = 1$

Multiple Qubits

- Multiple qubits in an arbitrary orthonormal basis: $|\phi_0\rangle$, $|\phi_1\rangle$, $|\phi_2\rangle$, ..., $|\phi_{N-1}\rangle$
- A more general representation:

$$|\boldsymbol{\phi}\rangle = \sum_{i=0}^{N-1} \alpha_i |\phi_i\rangle$$

where $\alpha_i \in \mathbb{C}$ and $\sum_{i=0}^{N-1} |\alpha_i|^2 = 1$

Next Topic

- Linear Operators, Unitaries, Quantum Gates, Entanglement, ...
- More linear algebra

- Next Wednesday: ~50min lecture + 40min exercise & explanation
 - Bring your pen and paper (and also your laptop/iPad to check the lecture notes)

References

- [NC00] Quantum Computation and Quantum Information. Michael Nielsen and Isaac Chuang
 - Section 1.2 (**Bloch sphere representation** of a qubit)
 - Sections 2.1.1 2.1.3
- [KLM07] An Introduction to Quantum Computing. Phillip Kaye, Raymond Laflamme, Michele Mosca
 - Sections 2.1, 2.2, and 2.6
- [RP11] Quantum Computing: A Gentle Introduction. Eleanor Rieffel and Wolfgang Polak
 - Sections 2.1-2.2, 3.1
- Professor Mark Zhandry's <u>lecture note</u>.
- Professor Henry Yuen's <u>lecture note</u>.