
Quantum Computing
• Lectures 1 and 2 (April 23-24, 2025)

• This week:
▪ Admin. 
▪ Overview of this module
▪ Quantum state, qubit, and their linear algebra formulation



• Course coordinator: Prof. Jiaxin Pan
• Lecturer & TA: Runzhi Zeng
• Email: 

• jiaxin.pan@uni-kassel.de
• runzhi.zeng@uni-kassel.de

• Office hours
• Office: Room 2628
• 2 pm – 2:30 pm, Wednesday
• (Please send an email in advance)

• All information is available on: 
• https://runzhizeng.github.io/QC-s25/

Contact Information

mailto:jiaxin.pan@uni-kassel.de
mailto:runzhi.zeng@uni-kassel.de
https://runzhizeng.github.io/QC-s25/


• Summer semester 2025: 23.04.2025 – 24.07.2025

• 14 Weeks: Wednesday and Thursday every week

• Lecture dates:
• April: 23, 24, 30
• May: 01(Labor Day), 7, 8, 14-15 (Travel), 21, 22, 28-29 (Ascension)
• June: 4, 5, 11, 12, 18, 19(Corpus Christi), 25, 26.
• July: 2, 3, 9, 10, 16,17, 23, 24.

Time



• Wednesday 12:00 – 13:30:  
• Two lectures (~40min each) + 10min break 

• Thursday 10:00 – 12:00:       
• One lecture (~45min) 
• Exercise and Q&A (~45min-1h) 
• Explanation of selected exercise questions (~15min-30min) 

• I may ask you to present your solutions

• This module involves a large amounts of calculations
• Please bring your pen and paper (especially on Thursday!)
• You can also bring your laptop/iPad to check the lecture notes at any time

Format



• Lecture notes: Will be updated at https://runzhizeng.github.io/QC-s25 
• Calculation Manuscripts: Would be updated at the Moodle.

• Textbooks:
• Quantum Computation and Quantum Information by Michael Nielsen and Isaac Chuang
• Linear Algebra and Learning from Data by Gilbert Strang
• An Introduction to Quantum Computing by Phillip Kaye, Raymond Laflamme, and Michele Mosca.
• Quantum Computing: A Gentle Introduction by  Eleanor Rieffel and Wolfgang Polak
• ...

Resources

https://runzhizeng.github.io/QC-s25


• Resources of other QC courses:
(Parts of this module are based on these external course materials)
• Quantum Computation and Information (Videos) by Prof. Ryan O'Donnell (Carnegie Mellon University)
• Quantum Cryptography by Prof. Qipeng Liu (UC San Diego)
• Quantum Cryptography by Prof. Mark Zhandry (Princeton University)
• Introduction to Quantum Computing by Prof. Dakshita Khurana and Prof. Makrand Sinha (University of Illinois)
• Introduction to Quantum Computing by Prof. Henry Yuen (Columbia University)
• Lecture Notes of Quantum Information Science by Prof. Scott Aaronson (UT Austin)

• Miscellaneous:
• Qubit Zoo: “Zoo” of interesting qubits and quantum gates
• Quantum Programming (Simulated): Q# and Qiskit

Resources

https://www.youtube.com/watch?v=78tSf2R1huk&list=PLm3J0oaFux3YL5qLskC6xQ24JpMwOAeJz
https://sites.google.com/view/qipengliu/cse190?authuser=0
https://mzhandry.github.io/courses/2018-Fall-COS597A/
https://courses.grainger.illinois.edu/cs498qc3/fa2023/index.html
https://www.henryyuen.net/classes/fall2024/
https://www.scottaaronson.com/qclec.pdf
https://www.qubitzoo.com/
https://learn.microsoft.com/en-us/azure/quantum/qsharp-overview
https://docs.quantum.ibm.com/guides


• Homework: Some problem sets (notice time: 1~2 weeks).

• Exam type (Oral or written?): To be decided

• When? To be decided

Homework and Exam 



What is Quantum Computing?

• Computation based on quantum mechanics, rather than classical physics

• Quantum mechanics:

• Classical physics does not work in some cases

• -> Quantization, introduced/explained by Planck, Einstein, ...

• -> Quantum theory, formalized by Schrödinger, Heisenberg, Dirac...



Quantum Mechanics

• Computation based on quantum mechanics, rather than classical physics

• Quantum mechanics:

• Classical physics does not work in some cases

Example: Photoelectric effect

(Source: Wikipedia)

electrons
Light

metal plate

Classical physics: 
“Light is continuous wave (with energy) 
 Shine light on the plate for a long time 
 Electrons should be emitted eventually”



Quantum Mechanics

• Computation based on quantum mechanics, rather than classical physics

• Quantum mechanics:

• Classical physics does not work in some cases

Example: Photoelectric effect

(Source: Wikipedia)

electrons
Light

metal plate

Classical physics: 
“Light is continuous wave (with energy) 
 Shine light on the plate for a long time 
 Electrons should be emitted eventually”

Double slit experiment: 
Light is a wave, 

or at least it behaves like  a wave
https://en.wikipedia.org/wiki/Double-slit_experiment 

https://en.wikipedia.org/wiki/Double-slit_experiment


Quantum Mechanics

• Computation based on quantum mechanics, rather than classical physics

• Quantum mechanics:

• Classical physics does not work in some cases

Example: Photoelectric effect

(Source: Wikipedia)

electrons
Light

metal plate

Classical physics: 
“Light is continuous wave (with energy) 
 Shine light on the plate for a long time 
 Electrons should be emitted eventually”

Reality (Experiments): 
1. There is a threshold frequency.

(Electrons are emitted only if the light’s frequency is high enough)
2. The emission of electrons is “immediately”, regardless of light’s intensity



Quantum Mechanics

• Computation based on quantum mechanics, rather than classical physics

• Quantum mechanics:

• Classical physics does not work in some cases

Example: Photoelectric effect

(Source: Wikipedia)

electrons
Light

metal plate

Classical physics: 
“Light is continuous wave (with energy) 
 Shine light on the plate for a long time 
 Electrons should be emitted eventually”

Reality (Experiments): 
1. There is a threshold frequency.

(Electrons are emitted only if the light’s frequency is high enough)
2. The emission of electrons is “immediately”, regardless of light’s intensity

Wenn sich nämlich bei der Ausbreitung eines Lichtstrahls 
die Energie nicht kontinuierlich im ganzen Raum verteilt, 
sondern aus einzelnen, im Raum lokalisierten Quanten 
besteht, dann erklärt das diemerkwürdigen Eigenschaften 
der Photoelektrizität…

(Source: Wikipedia)



• Computation based on quantum mechanics, rather than classical physics

• Quantum mechanics:

• Classical physics does not work in some cases

• -> Quantization, introduced/explained by Planck, Einstein, ...

Quantum Mechanics

Example: 𝐸 =  ℎ ⋅ 𝑣
𝐸:  Energy of the photon
ℎ:  Planck’s constant
𝑣:  Frequency of the photon

Example: Photoelectric effect

(Source: Wikipedia)

electrons

Light (Photons)

metal plate

(Source: Wikipedia)

“Wave–Particle Duality”



• Computation based on quantum mechanics, rather than classical physics

• Quantum mechanics:

• Classical physics does not work in some cases

• -> Quantization, introduced/explained by Planck, Einstein, ...

• -> Quantum theory, formalized by Schrödinger, Heisenberg, Dirac, ...

Quantum Mechanics

𝒊ℏ
𝒅

𝒅𝒕
𝚿(𝒕) = ෡𝑯|𝚿 𝒕 ⟩

(Schrödinger equation)
𝚫𝒙 ⋅ 𝚫𝒑 ≥

ℏ

𝟐

(Heisenberg Uncertainty Principle)
Schrödinger’s Cat

(picture from Medium)
(Source: Wikipedia)

(Source: Wikipedia)

𝑼 𝝍 𝝓 𝝍 = 𝝓 𝝍 𝑼 𝝍

(Dirac’s notation)

(Source: Wikipedia)



Quantum Mechanics

Human 
knowledge of the 

natural world

Quantum Gravity?

Paradox inside 
a black hole?

Quantum 
Mechanics

Locality 
vs 
Reality



• Computation based on quantum mechanics, rather than classical physics

Quantum Computing

Quantum 
Mechanics

(Source of pictures: Wikipedia)

Information Theory 
+ Quantum Mechanics
= Quantum Computing

...



• Computation based on quantum mechanics, rather than classical physics

Quantum Computing

Quantum 
Mechanics

David Deutsch

Richard Feynman
• Simulating quantum systems with 

classical computers is inefficient 
• Quantum Systems/Computers 

are required

• Deutsch’s algorithm, Deutsch-
Jozsa algorithm

• Quantum Turing Machine

(Source of pictures: Wikipedia)

Information Theory 
+ Quantum Mechanics
= Quantum Computing

...



• Computation based on quantum mechanics, rather than classical physics

Quantum Computing

Quantum 
Mechanics Peter Williston Shor

• Breakthrough: Shor’s algorithm
• Break most of existing public-key 

cryptosystems
• ... which motivates 
            “post-quantum cryptography”

Lov K. Grover
• Grover search: 
        A Quantum search algorithm
• Significant impacts on information 

theory, computational complexity,  
cryptography, ...

(Source of pictures: Wikipedia)

Information Theory 
+ Quantum Mechanics
= Quantum Computing

...



• Computation based on quantum mechanics, rather than classical physics

Quantum Computing

Quantum 
Mechanics

Information Theory 
+ Quantum Mechanics
= Quantum Computing

(Source of pictures: Wikipedia)

Advances in quantum 
computing

...
...



• Computation based on quantum mechanics, rather than classical physics

Quantum Computing

Quantum 
Mechanics

Information Theory 
+ Quantum Mechanics
= Quantum Computing

(Source of pictures: Wikipedia)

Advances in quantum 
computing

We are now in the NISQ era!
NISQ = Noisy Intermediate-Scale Quantum
• Not yet powerful enough to run Shor’s or Grover’s algorithms at scale
• But quantum hardware is scaling up!
• Quantum error correction is still needed for fault-tolerant computing



Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)



Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)

Classical bit(s):
00101

01011

10110

0 = Low voltage (e.g., 0V)

1 = High voltage (e.g., 3.3V – 5V)
Logic gate

(Source of pictures: Wikipedia)



Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)

Classical bit(s):
00101

01011

10110

0 = Low voltage (e.g., 0V)

1 = High voltage (e.g., 3.3V – 5V)
Logic gate

Quantum 
logic gate

Single quantum bit (qubit)
represented by Bloch sphere
Superposition of 0 and 1!

(Source of pictures: Wikipedia)

superconducting 
qubits (IBM)



Quantum Computer vs Classical Computer

RAM

CPU Disk

(Classical World)
(Quantum World)

RAM&ROM



Quantum Computer vs Classical Computer

RAM

CPU RAM&ROM Disk

(Classical World)
(Quantum World)

No-cloning



Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)

Classical Computation

(watch)

(Does not change 
the output)



Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)

Classical Computation

(watch)

(Does not change 
the output)

Quantum Computation

“Measurement”

Could change the output!



Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)

(11 million light-years)

Taking effect needs at least 11 million years! 
(Maximum speed: Speed of light)



Taking effect needs at least 11 million years! 
(Maximum speed: Speed of light)

Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)

(11 million light-years)

(11 million light-years)

Could “take effect” immediately 
if they have prior entanglement

Entanglement



Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)

𝑵 = 𝒑𝒒
(≈ 21024)
𝒑 ≠ 𝒒 are big primes

𝒑, 𝒒

Unknown!



Quantum Computer vs Classical Computer

(Classical World)
(Quantum World)

𝑵 = 𝒑𝒒
(≈ 21024)
𝒑 ≠ 𝒒 are big primes

𝒑, 𝒒

Unknown!

Using Shor’s algorithm
(Though no existing quantum computer can run this yet.)

𝑵 = 𝒑𝒒
(≈ 21024)
𝒑 ≠ 𝒒 are big primes

𝒑, 𝒒



Quantum Computer vs Classical Computer

• What makes Quantum Computing powerful?
• Quantum Superposition – Qubits
• Unitary quantum gates instead of logic gates
• Quantum Entanglement
• Quantum Measurement
• Quantum algorithms utilizing quantum properties...



Impact on Computational Complexity

• Exponential speedups for some specific problems
• Factoring, discrete logarithm, or more generally, hidden (finite abelian) subgroup problem

• Polynomial speedups for generic search problems
• Grover search
• Improve some lower bounds



Impact on Computational Complexity

• Exponential speedups for some specific problems
• Factoring, discrete logarithm, or more generally, hidden (finite abelian) subgroup problem

• Polynomial speedups for generic search problems
• Grover search
• Improve some lower bounds

• Quantum Computers ≠ More “Computable”
• They cannot solve uncomputable problems (e.g., the halting problem)

• Quantum Computers ≠ Always more efficient
• No known advantage in many problems (e.g., Traveling Salesman Problem)



Overall Goals

• Main topics:
• Quantum mechanics and its linear algebra formulation

• Entanglement and Measurement

• Quantum Algorithms:

• Described by quantum gates/circuits, unitaries

• Quantum “parallelism” – evaluation on superposition

• Applications of quantum algorithms – QKD, QFT, search, ...

• Quantum Information

• Quantum Programming (TBD)?



Overall Goals

• After completing this module, you should be able to:

• Explain the fundamental principles of quantum computing (QC) and basic quantum mechanics.

• Use the relevant linear algebra (including qubit representations and quantum gates) to formalize 
quantum computing notions and perform basic calculations.

• Describe and apply quantum algorithms such as the Quantum Fourier Transform and Grover’s 
search algorithm.

• Design some simple quantum circuits/algorithms based on the algorithms you learned

• Read and understand introductory research papers on quantum computing and cryptography.



Qubit and Superposition

atom atom atom

0 1Ground 
state

Excited
state



Qubit and Superposition

atom

𝜙  = 𝛼 0 + 𝛽 1

We do not know where        is...
Or,      is in “superposition”...



Qubit and Superposition

atom

𝜙  = 𝛼 0 + 𝛽 1

atom

𝜙  = 𝛼 0 + 𝛽 1

No-cloning

atom

𝜙  = 𝛼 0 + 𝛽 1



Qubit and Superposition

atom

𝜙  = 𝛼 0 + 𝛽 1

atom

𝜙  = 𝛼 0 + 𝛽 1

No-cloning

atom

𝜙  = 𝛼 0 + 𝛽 1

Quantum key distribution, 
quantum money, ...



Measurement

atom

𝜙  = 𝛼 0 + 𝛽 1

Measurement



Measurement

atom

𝜙  = 𝛼 0 + 𝛽 1

atom

atom

with probability 

with probability 𝛽 2 

𝛼 2

Measurement

(causes collapse)



Measurement

atom

𝜙  = 𝛼 0 + 𝛽 1

atom

atom

Measurement

(causes collapse)

with probability 

with probability 𝛽 2 

𝛼 2

Treat a qubit as a mathematic object
(regardless of its physical meaning)
so we can focus on quantum computing 

without diving into physics, philosophy, ...



Multiple Qubits

System 
1

System 
2

System 
3

... System 
n

𝜙1 𝜙2 𝜙3 𝜙𝑛



Multiple Qubits

System 
1

System 
2

System 
3

... System 
n

𝜙1 𝜙2 𝜙3 𝜙𝑛

The state of the 
composite system:

𝜓 = 𝜙1 ⊗ 𝜙2 ⊗ 𝜙3 ⊗ ⋯ ⊗ 𝜙𝑛 , ⊗: Tensor product



Multiple Qubits

System 
1

System 
2

System 
3

... System 
n

𝜙1 𝜙2 𝜙3 𝜙𝑛

The state of the 
composite system:

𝜓 = 𝜙1 ⊗ 𝜙2 ⊗ 𝜙3 ⊗ ⋯ ⊗ 𝜙𝑛 , ⊗: Tensor product

Examples: 0 ⊗ 1 ⊗ 1 ⊗ 1 = 0111 ,   1 ⊗ 0 ⊗ 1 ⊗ 0 ⊗ |1⟩ = 10101  

0 ⊗ 1 ⊗ 𝛼 0 + 𝛽 1 ⊗ 1 , 0 ⊗ 1 ⊗
0 + 1

2
⊗ 1  



Multiple Qubits

System 
1

System 
2

System 
3

... System 
n

𝜙1 𝜙2 𝜙3 𝜙𝑛

Measurement

collapse

0  or 1

Measure one subsystem 
=> 

(1) The subsystem collapses
(2) Other subsystems remain the same



Entanglement

𝜙1 𝜙2

System 
1

System 
2

𝜓 = 𝜙1 ⊗ 𝜙2



Entanglement

System 
1

System 
2

𝝍

𝜓 = 𝜙1 ⊗ 𝜙2



Entanglement

System 
1

System 
2

𝝍

Measurement

collapse
Measure one subsystem 

=> 
The whole system collapses

some basic state



Unitaries and Superposition Evaluation

𝑼𝒇

𝑏

0

𝑏

0 ⊕ 𝑓(𝑏) = 𝑓(𝑏)

Let 𝑓: 0,1 → 0,1  be a classical 
bit function:

𝒇𝑏 𝑓 𝑏

The “quantum version” of 𝑓: 



Unitaries and Superposition Evaluation

𝑼𝒇

𝑏

0

𝑏

𝑓(𝑏)



Unitaries and Superposition Evaluation

𝑼𝒇

𝑏

0

𝑏

𝑓(𝑏)

𝑼𝒇

𝑏 𝑏

𝑓(𝑏) ⊕ 𝑓(𝑏) = 0𝑓(𝑏)

Reversible 
Computation



Unitaries and Superposition Evaluation

𝑼𝒇

𝛼 0 + 𝛽 1

0

𝛼 0 + 𝛽 1

𝑼𝒇

𝑏

0

𝑏

𝑓(𝑏)

𝑼𝒇

𝑏 𝑏

𝑓(𝑏) ⊕ 𝑓(𝑏) = 0𝑓(𝑏)



Quantum Gates and Algorithms

qAND qOR

H QFT ...

CNOT



Quantum Information – Entropy and Randomness

System 
1

𝝓𝟏

Measurement 
outcome 1

Measurement

How much “randomness” 
does it provide?

How does the entropy 
of the system behave 
after measurement?



Quantum Information - Distinguishability

System 
1

System 
2

𝝓𝟏

Measurement

Measurement 
outcome 1

𝝓𝟐

Measurement

Measurement 
outcome 2

How likely do they produce 
the same outcome?



Thursday’s Topic

• Quantum state, qubit, and their linear algebra formulation

• Bring your pen and paper



• A qubit describes the quantum state of a quantum system

• Abstracted as a mathematical object (i.e., ignore their physical meanings...)

• Two “basic” states 0 , 1
• Dirac (Bra-ket) notations
• In some research papers,  is also called a quantum register

• We describe the superposition state of the system using the qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

Qubit

𝜙  = 𝛼 0 + 𝛽 1



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

Qubit

𝜙  = 𝛼 0 + 𝛽 1



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

Qubit

𝜙  = 𝛼 0 + 𝛽 1

Superposition (for single qubit, informal): 𝝓  cannot be written as either 𝟎  or 𝟏



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

Qubit

𝜙  = 𝛼 0 + 𝛽 1

A quick recap of complex numbers ℂ:
• A complex number 𝛼 ∈ ℂ can be written as 𝜶 = 𝒂 + 𝒃𝒊, where 𝑎, 𝑏 are real numbers, and 𝑖 = −1
• If 𝛼 ∈ ℂ and 𝛼 = 𝑎 + 𝑏𝑖, then we write its conjugate as 𝜶∗ = 𝒂 − 𝒃𝒊

• We write 𝛼’s norm as 𝛼 = 𝑎2 + 𝑏2 . We always have 𝛼 = 𝛼∗ = 𝛼𝛼∗

• If 𝜶 = 1, then 𝜶 can also be written as 𝜶 = cos 𝜽 + 𝒊 sin 𝜽  for some 𝜽.
• By Euler’s formula, 𝜶 = cos 𝒙 + 𝒊 sin 𝒙 = 𝒆𝒊𝒙, and |𝒆𝒊𝒙| = 𝟏 



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

• Examples: 

Qubit

𝜙  = 𝛼 0 + 𝛽 1

1

2
0 +

1

2
1 cos 𝜃 0 + 𝑒𝑖𝜓 sin 𝜃 1



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

• Relation between 0  and 1 :
• They should be “easy” to distinguish
• Linear algebra representation:

Qubit as a unit vector

𝜙  = 𝛼 0 + 𝛽 1

0 ≔
1
0

, 1 =
0
1



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number

• Relation between 0  and 1 :
• They should be “easy” to distinguish
• Linear algebra representation:

𝜙  = 𝛼 0 + 𝛽 1

Some linear algebra:
• Focus on vector spaces over ℂ
• Linear (in)dependence, basis, orthonormal basis, transpose, adjoint, ... 

• We call 𝜓  a “ket” and 𝜓  a “bra”
• Inner product using Dirac (Bra-ket) notations: 𝜙 𝜓

• Easy to see 0 1 = 1 0 = 0 and 0 0 = 1= 1 1

0 ≔
1
0

, 0 ≔ 1∗ 0∗ (= [1 0]), or more generally, if 𝜓 =
𝛼
𝛽 , then 𝜓 = 𝛼∗ 𝛽∗  

Qubit as a unit vector



• We describe the state of a system using the single qubit:
• The numbers 𝛼 and 𝛽 are complex numbers

• A single qubit is a unit vector over ℂ𝟐

• Change basis:

𝜙  = 𝛼 0 + 𝛽 1

= 𝛼 1
0

+ 𝛽
0
1

 =
𝛼
𝛽 ∈ ℂ2

1
0

,
0
1

 is a basis of ℂ𝟐 (known as computational basis ) 

1

2

1
1

,
1

2

1
−1

 is also a basis of ℂ𝟐

𝜙 = 𝜙 𝜙 = 𝛼 2 + 𝛽 2 = 1

Qubit as a unit vector



• Single qubit: 

• Change basis:

• Let ≔
1

2

1
1

 and ≔
1

2

1
−1

, then:

Qubit in Different Bases

𝜙  =
𝛼
𝛽 ∈ ℂ2, 𝜙 = 1

1
0

,
0
1

 is a basis of ℂ𝟐 (known as the computational basis ) 

1

2

1
1

,
1

2

1
−1

 is also a basis of ℂ𝟐. 

𝜙  =
𝛼
𝛽 =

𝛼+𝛽

2
+

𝛼−𝛽

2



• Single qubit: 

• Described by different bases:

• What do they mean? Depends on measurement (will be introduced later)

𝜙  =
𝛼
𝛽 ∈ ℂ2, 𝜙 = 1

𝜙  = 𝛼 0 + 𝛽 1

𝜙  =
𝛼
𝛽 =

𝛼+𝛽

2
+

𝛼−𝛽

2

Qubit in Different Bases



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 ∈ ℂ2

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 =

𝜶+𝜷

𝟐
+

𝜶−𝜷

𝟐

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

• If we measure 𝜙  in the basis { , }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 =

𝜶+𝜷

𝟐
+

𝜶−𝜷

𝟐

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

• If we measure 𝜙  in the basis { , }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 =

𝜶+𝜷

𝟐
+

𝜶−𝜷

𝟐

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2

𝜙  
{ , }

𝑏 =

 with probability
𝜶 + 𝜷

𝟐

2

 with probability
𝜶 − 𝜷

𝟐

2



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

• If we measure 𝜙  in the basis { , }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 =

𝜶+𝜷

𝟐
+

𝜶−𝜷

𝟐

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2

𝜙  
{ , }

It depends on how you define 0, 1, , , 
... (i.e., how you encode the information 

and define its measurement) 

𝑏 =

 with probability
𝜶 + 𝜷

𝟐

2

 with probability
𝜶 − 𝜷

𝟐

2



• Single qubit: 𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

Single qubit measurement

Notes: 

1. We may also call 𝛼 and 𝛽 as amplitudes

2. Why complex numbers? A natural way for describing waves (amplitude + phase)



• Single qubit: 𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

Single qubit measurement

Wrong: The qubit is 0  with probability 𝜶 𝟐 and is 1  with probability 𝜷 𝟐

Correct: The qubit is in a superposition before measurement – in both  0  and  1   at once



• Single qubit: 𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

Single qubit measurement

Can we estimate 𝜶 and 𝜷 by measuring |𝜙⟩ many times?



• Single qubit: 𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

Single qubit measurement

Can we estimate 𝜶 and 𝜷 by measuring |𝜙⟩ many times?

No. Because of collapse and no-cloning...

𝜙  𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2

𝝓  becomes 𝒃  after measurement... 



• Let 𝜙  = 𝛼 0 + 𝛽 1  be a qubit

• Inner product (to see adjoint and linearity):

• Outer product: 𝜙 𝜙

Inner/Outer Product

𝜙 𝜙 = 𝜙 ⋅ 𝜙 = (𝛼∗ 0 + 𝛽∗ 1 ) ⋅ 𝛼 0 + 𝛽 1 = ⋯ = 1

𝜙  =
𝛼
𝛽 , 𝜙 = 𝛼∗ 𝛽∗ , 𝜙 𝜙 =

𝛼
𝛽 ⋅ 𝛼∗ 𝛽∗ = (a 2 x 2 matrix) 



• Let 𝜙  = 𝛼 0 + 𝛽 1  be a qubit

• Inner product (to see adjoint and linearity):

• Outer product: 𝜙 𝜙

Inner/Outer Product

𝜙 𝜙 = 𝜙 ⋅ 𝜙 = (𝛼∗ 0 + 𝛽∗ 1 ) ⋅ 𝛼 0 + 𝛽 1 = ⋯ = 1

𝜙  =
𝛼
𝛽 , 𝜙 = 𝛼∗ 𝛽∗ , 𝜙 𝜙 =

𝛼
𝛽 ⋅ 𝛼∗ 𝛽∗ = (a 2 x 2 matrix) 

What does 𝜙 𝜙  represents? A projector that project a vector onto the “line” 
(one-dimension linear space) spanned by 𝜙 .



• Let 𝐀 (𝑛1 × 𝑚1) and 𝐁 𝑛2 × 𝑚2  be two arbitrary complex matrices, where

• Then the tensor product of 𝐀 and 𝐁, denoted as 𝐀 ⊗ 𝐁, is defined by

Tensor Product

𝐀 =
𝑎1,1 ⋯ 𝑎1,𝑚1

⋮ ⋱ ⋮
𝑎𝑛1,1 ⋯ 𝑎𝑛1,𝑚1

,  𝐁 = 
𝑏1,1 ⋯ 𝑏1,𝑚2

⋮ ⋱ ⋮
𝑏𝑛2,1 ⋯ 𝑏𝑛2,𝑚2

𝐀 ⊗ 𝐁 =

𝑎1,1𝐁 ⋯ 𝑎1,𝑚1
𝐁

⋮ ⋱ ⋮
𝑎𝑛1,1𝐁 ⋯ 𝑎𝑛1,𝑚1

𝐁
, which is a 𝒏𝟏𝒏𝟐 × 𝒎𝟏𝒎𝟏 matrix 



• Let 𝐀 (𝑛1 × 𝑚1) and 𝐁 𝑛2 × 𝑚2  be two arbitrary complex matrices, where

• Then the tensor product of 𝐀 and 𝐁, denoted as 𝐀 ⊗ 𝐁, is defined by

• One can define tensor product for vectors in a natural way.

• We use tensor product to define multiple qubits

Tensor Product

𝐀 =
𝑎1,1 ⋯ 𝑎1,𝑚1

⋮ ⋱ ⋮
𝑎𝑛1,1 ⋯ 𝑎𝑛1,𝑚1

,  𝐁 = 
𝑏1,1 ⋯ 𝑏1,𝑚2

⋮ ⋱ ⋮
𝑏𝑛2,1 ⋯ 𝑏𝑛2,𝑚2

𝐀 ⊗ 𝐁 =

𝑎1,1𝐁 ⋯ 𝑎1,𝑚1
𝐁

⋮ ⋱ ⋮
𝑎𝑛1,1𝐁 ⋯ 𝑎𝑛1,𝑚1

𝐁
, which is a 𝒏𝟏𝒏𝟐 × 𝒎𝟏𝒎𝟏 matrix 



Multiple Qubits

• In the classical world, an 𝑛-bit string has 2𝑛 possibilities (i.e., 2𝑛 basic states)

• We define multiple qubits (in the computational basis) by an analogous way. 

𝑏𝑛−1𝑏𝑛−2 ⋯ 𝑏1𝑏0  ≔ 𝑏𝑛−1 ⊗ 𝑏𝑛−2 ⊗ ⋯ ⊗ 𝑏1 ⊗ 𝑏0

0 , 1 , 2 , 3 , … , 2𝑛 − 1



Multiple Qubits

• Multiple (𝑛) qubits in the computational basis.

• 2𝑛 basic states: 00 ⋯ 00 , 00 ⋯ 01 , 00 ⋯ 10 , 00 ⋯ 11 , ..., 11 ⋯ 11 , where

• More compact representation:

• An 𝒏-qubit states: A superposition of the 2𝑛 basic states (also a unit vector over ℂ𝟐𝒏
)

𝑏𝑛−1𝑏𝑛−2 ⋯ 𝑏1𝑏0  ≔ 𝑏𝑛−1 ⊗ 𝑏𝑛−2 ⊗ ⋯ ⊗ 𝑏1 ⊗ 𝑏0

0 , 1 , 2 , 3 , … , 2𝑛 − 1

𝝓 = σ𝑖=0
2𝑛−1 𝛼𝑖 𝑖 ,  

where 𝛼𝑖 ∈ ℂ and σ𝑖=0
2𝑛−1 𝛼𝑖

2 = 1



Multiple Qubits

• Multiple qubits in an arbitrary orthonormal basis: 𝜙0 , 𝜙1 , 𝜙2 , ..., 𝜙𝑁−1

• A more general representation:

𝝓 = σ𝑖=0
𝑁−1 𝛼𝑖 𝜙𝑖 ,  

where 𝛼𝑖 ∈ ℂ and σ𝑖=0
𝑁−1 𝛼𝑖

2 = 1



Next Topic

• Linear Operators, Unitaries, Quantum Gates, Entanglement, ...

• More linear algebra

• Next Wednesday: ~50min lecture + 40min exercise & explanation

• Bring your pen and paper (and also your laptop/iPad to check the lecture notes)



References
• [NC00] Quantum Computation and Quantum Information. Michael Nielsen and Isaac Chuang

• Section 1.2 (Bloch sphere representation of a qubit)
• Sections 2.1.1 – 2.1.3

• [KLM07] An Introduction to Quantum Computing. Phillip Kaye, Raymond Laflamme, Michele Mosca
• Sections 2.1, 2.2, and 2.6

• [RP11] Quantum Computing: A Gentle Introduction. Eleanor Rieffel and Wolfgang Polak
• Sections 2.1-2.2, 3.1

• Professor Mark Zhandry’s lecture note.

• Professor Henry Yuen’s lecture note.

https://mzhandry.github.io/courses/2018-Fall-COS597A/ln/LN2.pdf
https://www.henryyuen.net/fall2024/lectures/coms4281_2024_lecture_sept11.pdf
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