
Quantum Computing
• Lectures 15 and 16 (July 2-3, 2025)

• Topics:
• Factoring
• Order Finding
• Order Finding via Phase Estimation
• Order Finding via Shor’s algorithm
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• Inverse Quantum Fourier Transformation

• Extract 𝒋 from the phases!
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QFT and inverse QFT
• Circuit for QFT (and similarly, inverse QFT)
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Phase Estimation

• Given 𝑼 and 𝑢  s.t. 𝑼 𝑢 = 𝑒2𝜋𝑖𝜑 𝑢 = 𝑒2𝜋𝑖 0.𝜑1𝜑2𝜑3… 𝑢

• Compute or estimate 0. 𝜑1𝜑2𝜑3 …
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Period Finding

• Suppose that we have a function 𝑓 with a period 𝑟 < 2𝐿.

• Namely, there exists a minimal 𝑟 > 0 such that 𝑓 𝑥 + 𝑟 = 𝑓(𝑥)

• Goal: Find 𝑟
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Factoring

• Let 𝑁 = 𝑝𝑞, where 𝑝 and 𝑞 are large primes

• Factoring: Given 𝑁, find 𝑝 and 𝑞

• Easy case 1: 𝑝 − 𝑞  is too small (e.g., 𝑝 = 𝑞)

• Easy case 2: 𝑝 − 𝑞  is too large

• Worst case: No known efficient classical algorithm

• Applications:
• RSA cryptosystems

Source: RSA_Factoring_Challenge, Wikipedia



Order Finding

• Let 𝑁 and 𝑥 be two positive integers 

• Algebra fact: Multiplication mod 𝑁 forms a group ℤ𝑁
∗

• Quick question: If 𝑥 ∈ ℤ𝑁
∗ , then ____
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Order Finding

• Let 𝑁 and 𝑥 be two positive integers 

• Algebra fact: Multiplication mod 𝑁 forms a group ℤ𝑁
∗

• Quick question: If 𝑥 ∈ ℤ𝑁
∗ , then gcd 𝑥, 𝑁 = 1

• Order (mod N): The minimal integer 𝑟 such that 𝑥𝑟 = 1 (mod 𝑁)

• Order Finding: Find 𝑟

• Two approaches:
• (1) Phase estimation
• (2) Shor’s approach (Exercise tomorrow)



Order Finding

• Order (mod N): The minimal integer 𝑟 such that 𝑥𝑟 = 1 (mod 𝑁)

• Order Finding: Let 𝑁 and 𝑥 be two positive integers. Find the order 𝑟 of 𝑥.

• Phase estimation approach:
• Use qubits to express modulo 𝑁
• Let 𝑈𝑥: 𝑣 ↦ 𝑣 ⋅ 𝑥 mod 𝑁

1. What are the eigenvalues of 𝑈𝑥
𝑟  and 𝑈𝑥

2. Let 𝑢𝑘  be the eigenvalue of 𝑈𝑥 with 𝑘-th root of unity. How can we generate 𝑢𝑘 ?

3. Given (𝑘1

𝑟
,

𝑘2

𝑟
, … ), where all k values are random, how can we recover 𝑟?

4. Given 𝑟, how can we decompose 𝑁?



Order Finding

• Order (mod N): The minimal integer 𝑟 such that 𝑥𝑟 = 1 (mod 𝑁)

• Order Finding: Let 𝑁 and 𝑥 be two positive integers. Find the order 𝑟 of 𝑥.

• Phase estimation approach:
• Let 𝑈𝑥: 𝑣 ↦ 𝑣 ⋅ 𝑥 mod 𝑁
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Reduction: Factoring to Order Finding

• Reduction (Informal): We say 𝑷𝟐 is reducible to 𝑷𝟏 if solving 𝑷𝟏 ⇒ solving 𝑷𝟐 
• We usually require the “⇒” here is some efficient algorithm

• 𝑃1 (Order finding) = “Given 𝑁 and 𝑥, find 𝑟 (i.e., the minimal 𝑟 s.t. 𝑥𝑟 = 1 (𝑚𝑜𝑑 𝑁))”
• 𝑃2 (Factoring) = “Given 𝑁 = 𝑝𝑞, find the two primes 𝑝 and 𝑞” 

• Question: If we can solve 𝑃1, then how can we solve 𝑃2?
• Namely, if we can always compute the order 𝑟 of arbitrary 𝑥 (𝑚𝑜𝑑 𝑁), …
• …then how to decompose 𝑁?



Order Finding via Shor’s algorithm

• Order (mod N): The minimal integer 𝑟 such that 𝑥𝑟 = 1 (mod 𝑁)

• Order Finding: Let 𝑁 and 𝑥 be two positive integers. Find the order 𝑟 of 𝑥.

• Shor’s algorithm: (Same circuit but different analysis)
• Let 𝑈𝑥: 𝑣 ↦ 𝑣 ⋅ 𝑥 mod 𝑁
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Reference
• [NC00]: Chapter 5

• [KLM07]: Chapter 7 (Tip: Check out Fig 7.16)
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