Quantum Computing

* Lectures 15 and 16 (July 2-3, 2025)

* Topics:

Factoring

Order Finding

Order Finding via Phase Estimation
Order Finding via Shor’s algorithm




QFT and inverse QFT

* Quantum Fourier Transformation
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QFT and inverse QFT

* |Inverse Quantum Fourier Transformation
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* Extractj from the phases!




QFT and inverse QFT
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e Circuit for QFT (and similarly, inverse QFT) R = [ 2mi
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Phase Estimation

« Given U and |u) s.t. Ulu) = e2™@|y) = ¢2mi (0019205 )y)

« Compute or estimate (0. @, ¢, @5 ...)
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Period Finding

* Suppose that we have a function f with a period r < 2L,
* Namely, there exists a minimalr > 0 such that f(x + 1) = f(x)

* Goal: Findr
|0) // f\m\ == [/r (forrandom [)
0 —F 7))




Factoring

Factoring: Given N, find p and q

Easy case 2: |p — q| is too large

RSAB96

Applications: S
* RSA cryptosystems RSA290

RSA300
RSA309
RSA1024

Let N = pq, where p and q are large primes

Easy case 1: |p — q| istoo small (e.g., p = q)

270
280
290
300
309
309

Worst case: No known efficient classical algorithm

896 US$75,0000
928

962

995

1024

1024 Us$100,000

Source: RSA_Factoring_Challenge, Wikipedia




Order Finding

 Let N and x be two positive integers
 Algebra fact: Multiplication mod N forms a group Zy

* Quick question: If x € Zy, then




Order Finding

 Let N and x be two positive integers
 Algebra fact: Multiplication mod N forms a group Zy
* Quick question: If x € Zy, then gcd(x,N) = 1




Order Finding

Let N and x be two positive integers

Algebra fact: Multiplication mod N forms a group Zy

Quick question: If x € Zy, then gcd(x,N) = 1

Order (mod N): The minimal integer r such thatx” = 1 (mod N)

Order Finding: Find r
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Order Finding

Let N and x be two positive integers

Algebra fact: Multiplication mod N forms a group Zy
Quick question: If x € Zy, then gcd(x,N) = 1

Order (mod N): The minimal integer r such thatx” = 1 (mod N)
Order Finding: Find r

Two approaches:
* (1) Phase estimation
* (2) Shor’s approach (Exercise tomorrow)
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Order Finding

* Order (mod N): The minimalinteger r such thatx” = 1 (mod N)

* Order Finding: Let N and x be two positive integers. Find the order r of x.

* Phase estimation approach:
* Use qubits to express modulo N
* LetU,:|v) » |v:-x modN)

1. What are the eigenvalues of U} and U,

2. Let |uy) be the eigenvalue of U, with k-th root of unity. How can we generate |uy)?
3. Given (%,%, ... ), where all k values are random, how can we recover r?

4. Givenr, how canwe decompose N?
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Order Finding

* Order (mod N): The minimalinteger r such thatx” = 1 (mod N)

* Order Finding: Let N and x be two positive integers. Find the order r of x.

* Phase estimation approach:
* LetU,:|v) » |v-x mod N)
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Reduction: Factoring to Order Finding

Reduction (Informal): We say P, is reducible to P, if solving P; = solving P,
* We usually require the “=” here is some efficient algorithm

P; (Order finding) = “Given N and x, find r (i.e., the minimalr s.t. x™ = 1 (mod N))”
P, (Factoring) =“Given N = pq, find the two primes p and q”

Question: If we can solve P;, then how can we solve P,?
* Namely, if we can always compute the order r of arbitrary x (mod N), ...
e ...then howto decompose N?




Order Finding via Shor’s algorithm

* Order (mod N): The minimalinteger r such thatx” = 1 (mod N)

* Order Finding: Let N and x be two positive integers. Find the order r of x.

e Shor’s algorithm: (Same circuit but different analysis)
* LetU,:|v) » |v-x mod N)
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where J is random
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Reference

* [NCOO0]: Chapter 5
 [KLMO7]: Chapter 7 (Tip: Check out Fig 7.16)
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