Quantum Computing

- Lectures 15 and 16 (July 2-3, 2025)
- Topics:
 - Factoring
 - Order Finding
 - Order Finding via Phase Estimation
 - Order Finding via Shor's algorithm

QFT and inverse QFT

Quantum Fourier Transformation

$$\mathbf{QFT_{N}}: |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i j k}{N}} |k\rangle$$

$$\mathbf{QFT}$$

$$\mathbf{QFT_N^{\dagger}}: |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{-\frac{2\pi i j k}{N}} |k\rangle$$
Inverse QFT

$$\mathbf{QFT_N^{\dagger}QFT_N} = I$$

QFT and inverse QFT

• Inverse Quantum Fourier Transformation

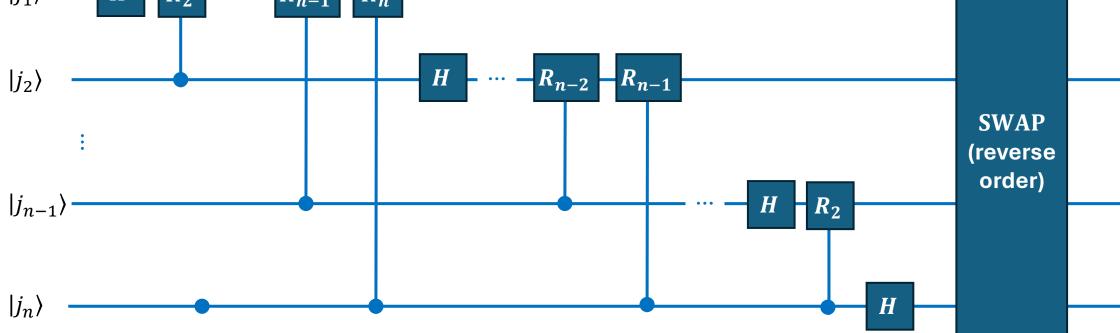
$$\mathbf{QFT}_{\mathbf{N}}^{\dagger}: \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i \mathbf{j} k}{N}} |k\rangle \mapsto |\mathbf{j}\rangle$$

Inverse QFT

• Extract *j* from the phases!

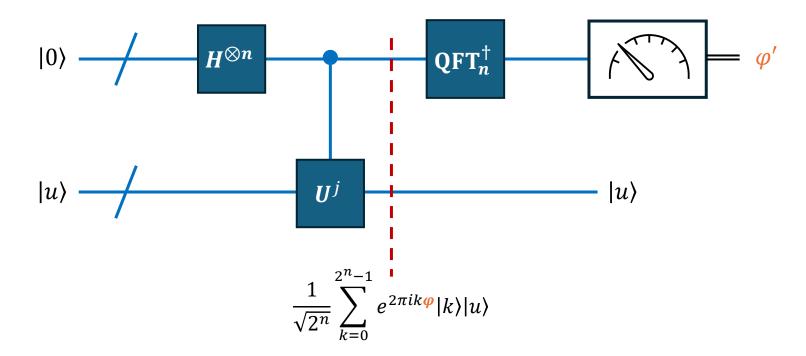
QFT and inverse QFT

• Circuit for QFT (and similarly, inverse QFT) $R_k \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{2\pi i}{2^k}} \end{bmatrix}$



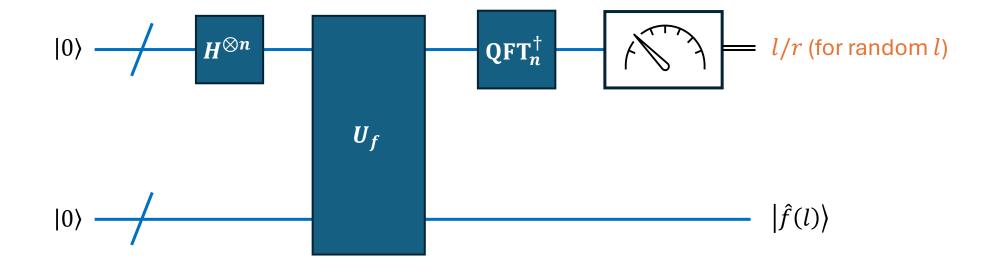
Phase Estimation

- Given U and $|u\rangle$ s.t. $U|u\rangle=e^{2\pi i\varphi}|u\rangle=e^{2\pi i(0.\varphi_1\varphi_2\varphi_3...)}|u\rangle$
- Compute or estimate $(0. \varphi_1 \varphi_2 \varphi_3 ...)$



Period Finding

- Suppose that we have a function f with a period $r < 2^L$.
- Namely, there exists a minimal r > 0 such that f(x + r) = f(x)
- Goal: Find r



Factoring

- Let N = pq, where p and q are large primes
- Factoring: Given N, find p and q
- Easy case 1: |p q| is too small (e.g., p = q)
- Easy case 2: |p q| is too large
- Worst case: No known efficient classical algorithm
- Applications:
 - RSA cryptosystems

RSA896	270	896	US\$75,000 ^[d]
RSA280	280	928	
RSA290	290	962	
RSA300	300	995	
RSA309	309	1024	
RSA1024	309	1024	US\$100,000 ^[d]

Source: RSA_Factoring_Challenge, Wikipedia

- Let *N* and *x* be two positive integers
- Algebra fact: Multiplication mod N forms a **group** \mathbb{Z}_N^*
- Quick question: If $x \in \mathbb{Z}_N^*$, then _____

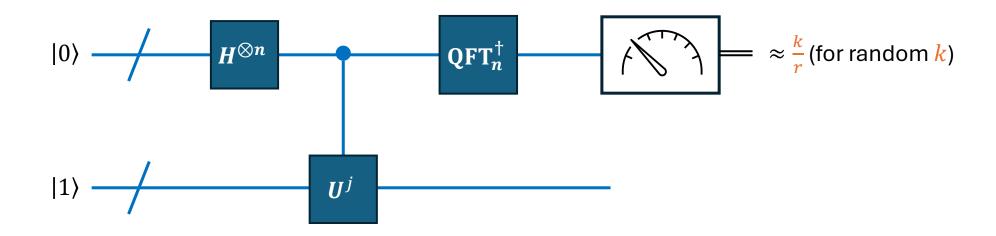
- Let *N* and *x* be two positive integers
- Algebra fact: Multiplication mod N forms a **group** \mathbb{Z}_N^*
- Quick question: If $x \in \mathbb{Z}_N^*$, then gcd(x, N) = 1

- Let N and x be two positive integers
- Algebra fact: Multiplication mod N forms a group \mathbb{Z}_N^*
- Quick question: If $x \in \mathbb{Z}_N^*$, then gcd(x, N) = 1
- Order (mod N): The minimal integer r such that $x^r = 1 \pmod{N}$
- Order Finding: Find r

- Let N and x be two positive integers
- Algebra fact: Multiplication mod N forms a group \mathbb{Z}_N^*
- Quick question: If $x \in \mathbb{Z}_N^*$, then gcd(x, N) = 1
- Order (mod N): The minimal integer r such that $x^r = 1 \pmod{N}$
- Order Finding: Find r
- Two approaches:
 - (1) Phase estimation
 - (2) Shor's approach (Exercise tomorrow)

- Order (mod N): The minimal integer r such that $x^r = 1 \pmod{N}$
- Order Finding: Let N and x be two positive integers. Find the order r of x.
- Phase estimation approach:
 - Use qubits to express modulo N
 - Let $U_x: |v\rangle \mapsto |v \cdot x \mod N\rangle$
 - 1. What are the eigenvalues of U_x^r and U_x
 - 2. Let $|u_k\rangle$ be the eigenvalue of U_x with k-th root of unity. How can we generate $|u_k\rangle$?
 - 3. Given $(\frac{k_1}{r}, \frac{k_2}{r}, ...)$, where all k values are random, how can we recover r?
 - 4. Given r, how can we decompose N?

- Order (mod N): The minimal integer r such that $x^r = 1 \pmod{N}$
- Order Finding: Let N and x be two positive integers. Find the order r of x.
- Phase estimation approach:
 - Let $U_x: |v\rangle \mapsto |v \cdot x \mod N\rangle$



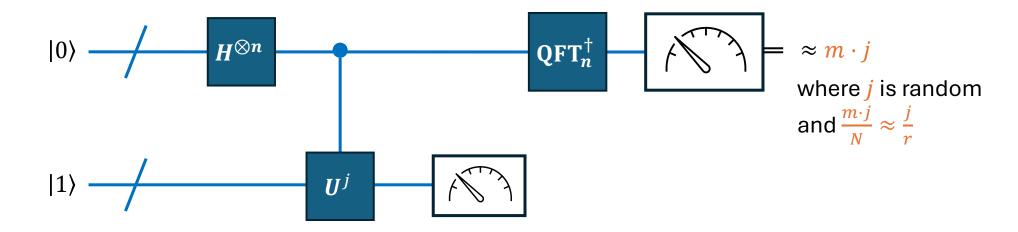
Reduction: Factoring to Order Finding

- Reduction (Informal): We say P_2 is reducible to P_1 if solving $P_1 \Rightarrow$ solving P_2
 - We usually require the "⇒" here is some efficient algorithm

- P_1 (Order finding) = "Given N and x, find r (i.e., the minimal r s.t. $x^r = 1 \pmod{N}$)"
- P_2 (Factoring) = "Given N = pq, find the two primes p and q"
- Question: If we can solve P_1 , then how can we solve P_2 ?
 - Namely, if we can always compute the order r of arbitrary $x \pmod{N}$, ...
 - ...then how to decompose *N*?

Order Finding via Shor's algorithm

- Order (mod N): The minimal integer r such that $x^r = 1 \pmod{N}$
- Order Finding: Let N and x be two positive integers. Find the order r of x.
- Shor's algorithm: (Same circuit but different analysis)
 - Let $U_x: |v\rangle \mapsto |v \cdot x \mod N\rangle$



Reference

- **[NC00]:** Chapter 5
- [KLM07]: Chapter 7 (Tip: Check out Fig 7.16)