Quantum Computing

- Lectures 17 and 18 (July 9-10, 2025)
- Topics:
 - Unstructured Search Problem
 - Grover's algorithm

- Search problems: Given a domain D and a Boolean function f, find an $x \in D$ s.t. f(x) = 1.
 - How good a search algorithm is: How many times f is evaluated.
- Running time: (Suppose that $|D| = 2^n$, namely, exponentially large)
 - The worst case: Brute-force, O(|D|)
 - Good cases: *D* has some **structures**...
- Polynomial-time $(O(\log |D|) = O(n))$ searching algorithms relying on specific data structures:
 - Binary search in sorted lists
 - Binary search in some tree structures (binary tree, AVL tree, red-black tree, ...)
 - BFS/DFS in some graph structures
 - QFT (or Shor's algorithm) in functions with periods

- Search problems: Given a domain D and a Boolean function f, find an $x \in D$ s.t. f(x) = 1.
 - How good a search algorithm is: How many times f is evaluated.
- Running time: (Suppose that $|D| = 2^n$, namely, exponentially large)
 - The worst case: Brute-force, O(|D|)
 - Good cases: D has some structures...
- For unstructured search problems, can quantum computing offer a better solution?
 - Grover's algorithm, $\mathbf{O}\left(\sqrt{|\boldsymbol{D}|}\right)$ quantum evaluations on f

- Transform a "standard oracle" into a "phase oracle"
- Understand f as an oracle:
 - Reformulate a search algorithm as an oracle algorithm
 - Treat f as an oracle to reflect its black-box nature and the lack of structure
 - Evaluate f once = query the oracle f once

- Transform a "standard oracle" into a "phase oracle"
- Understand f as a quantum-accessible oracle:
 - ...
 - Evaluate U_f once = query the oracle U_f once

Algorithm that evaluates U_f Oracle algorithm that queries U_f $\sum |x\rangle|y\rangle$ $\sum |x\rangle|y\oplus f(x)\rangle$

- Transform a "standard oracle" into a "phase oracle"
- Understand f as a quantum-accessible oracle:

- Query U_f on $\sum |x\rangle |0\rangle$, then get $\sum |x\rangle |f(x)\rangle$
- Question: Query U_f on $\sum |x\rangle \left(\frac{|0\rangle |1\rangle}{\sqrt{2}}\right)$, then get...

- Transform a "standard oracle" into a "phase oracle"
- Understand f as a quantum-accessible oracle:

- Query U_f on $\sum |x\rangle |0\rangle$, then get $\sum |x\rangle |f(x)\rangle$
- Question: Query U_f on $\sum |x\rangle \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$, then get $\sum (-1)^{f(x)}|x\rangle \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$

- Transform a "standard oracle" into a "phase oracle"
- Phase oracle:

- Query U_f on $\sum |x\rangle \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$, then get $\sum (-1)^{f(x)}|x\rangle \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$
- Ignore the last qubit $\left(\frac{|0\rangle |1\rangle}{\sqrt{2}}\right)$

- Reformulate unstructured search problems
- Given a domain D and a phase oracle $U_f:|x\rangle\mapsto (-1)^{f(x)}|x\rangle$, find an $x\in D$ s.t. f(x)=1.
 - Let $|D| = N = 2^n$ for some integer n
 - Suppose that there is only one $x_0 \in D$ s.t. $f(x_0) = 1$

- Reformulate unstructured search problems
- Given a domain D and a phase oracle $U_f:|x\rangle\mapsto (-1)^{f(x)}|x\rangle$, find an $x\in D$ s.t. f(x)=1.
 - Let $|D| = N = 2^n$ for some integer n
 - Suppose that there is only one $x_0 \in D$ s.t. $f(x_0) = 1$
- Starting point:

- Reformulate unstructured search problems
- Given a domain D and a phase oracle $U_f:|x\rangle\mapsto (-1)^{f(x)}|x\rangle$, find an $x\in D$ s.t. f(x)=1.
 - Let $|D| = N = 2^n$ for some integer n
 - Suppose that there is only one $x_0 \in D$ s.t. $f(x_0) = 1$
- Starting point:

• Goal: Boost the **amplitude** of the marked state $|x_0\rangle$

Consider the following quantum circuit:

• The phase gate: $|x\rangle \mapsto (-1)^x |x\rangle$

Consider the following quantum circuit:

• The phase gate: $|x\rangle \mapsto (-1)^x |x\rangle$

Consider the following quantum circuit:

- The phase gate: $|x\rangle \mapsto (-1)^x |x\rangle$
- Let $|x_0^{\perp}\rangle \coloneqq \sum_{x \neq x_0} \frac{1}{\sqrt{N-1}} |x\rangle$

$$H^{\otimes n}|\mathbf{0}\rangle = \frac{1}{\sqrt{N}}|\mathbf{0}\rangle + \frac{2}{\sqrt{N}}|\mathbf{x}_0\rangle$$

$$= \frac{\sqrt{N-1}}{\sqrt{N}}|x_0\rangle + \frac{1}{\sqrt{N}}|x_0\rangle$$

$$= (1 - \frac{4}{N})\frac{\sqrt{N-1}}{\sqrt{N}}|x_0\rangle + (3 - \frac{4}{N})\frac{1}{\sqrt{N}}|x_0\rangle$$

Consider the following quantum circuit:

Observation:

$$H^{\otimes n}$$
 Phase $H^{\otimes n}$ $= H^{\otimes n}|0\rangle\langle 0|H^{\otimes n}-I|$ $\coloneqq 2|\psi_{\$}\rangle\langle \psi_{\$}|-I$

• Change the view:

$$H^{\otimes n}|\mathbf{0}\rangle = \frac{\sqrt{N-1}}{\sqrt{N}}|x_0\rangle + \frac{1}{\sqrt{N}}|x_0\rangle \qquad \qquad G = (2|\psi_{\$}\rangle\langle\psi_{\$}| - I)U_f$$

• Change the view:

$$H^{\otimes n}|\mathbf{0}\rangle = \cos(\theta)|x_0^{\perp}\rangle + \sin\theta|x_0\rangle \qquad \qquad G = (2|\psi_{\$}\rangle\langle\psi_{\$}| - I)U_f$$

• We have: $G(\cos(\theta) | x_0^{\perp} \rangle + \sin \theta | x_0 \rangle) = (|\psi_{\$}\rangle \langle \psi_{\$}| - I) U_f(\cos(\theta) | x_0^{\perp} \rangle + \sin \theta | x_0 \rangle)$ = $\cos(3\theta) | x_0^{\perp} \rangle + \sin(3\theta) | x_0 \rangle$

Change the view:

$$H^{\otimes n}|\mathbf{0}\rangle = \cos(\theta)|x_0^{\perp}\rangle + \sin\theta|x_0\rangle \qquad \qquad \qquad G = (2|\psi_{\$}\rangle\langle\psi_{\$}| - I)U_f$$

• More generally:

$$G^{k}(\cos(\theta)|x_{0}^{\perp}\rangle + \sin\theta|x_{0}\rangle) = \cos((1+2k)\theta)|x_{0}^{\perp}\rangle + \sin((1+2k)\theta)|x_{0}\rangle$$

• Grover's algorithm: Apply the unitary G many times so that $\sin((1+2k)\theta)$ is noticeable

Change the view:

$$H^{\otimes n}|\mathbf{0}\rangle = \cos(\theta)|x_0^{\perp}\rangle + \sin\theta|x_0\rangle \qquad \qquad \qquad G = (2|\psi_{\$}\rangle\langle\psi_{\$}| - I)U_f$$

• More generally:

$$G^{k}(\cos(\theta)|x_{0}^{\perp}\rangle + \sin\theta|x_{0}\rangle) = \cos((1+2k)\theta)|x_{0}^{\perp}\rangle + \sin((1+2k)\theta)|x_{0}\rangle$$

- Grover's algorithm: Apply the unitary G many times so that $\sin((1+2k)\theta)$ is noticeable
- Theorem (Informal): $sin((1+2k)\theta)$ is noticeable if $k = O(\sqrt{N})$.

Grover Search Algorithm

• Apply G about $O(\sqrt{N})$ times to make $\Pr[x' = x_0]$ noticeable (e.g., $\geq \frac{1}{2}$)

Grover Search Algorithm

• Two ways to understand the process of amplitude amplification:

Grover Search Algorithm

• Two ways to understand the process of amplitude amplification: $G = (2|\psi_{\$}\rangle\langle\psi_{\$}| - I)U_f|\psi_{\$}\rangle$

Reference

- [NC00]: Chapter 6
- **[KLM07]:** Chapter 8