Quantum Computing

• Week 13 (July 16-17, 2025)

- Topics:
 - A summary of quantum algorithms
 - Pure states and mixed states
 - Density operator and trace
 - Partial trace and partial measurement
 - Reduced density operator

Quantum Algorithms

- Quantum algorithms that we have studied so far:
 - Deutsch-Jozsa algorithm
 - Superdense coding
 - Quantum teleportation
 - Quantum Fourier transformation and order finding
 - Grover search algorithm

Quantum Algorithms

Algorithm	Addressing problem	Classical "Complexity"	Quantum "Complexity"	Improvement
Deutsch-Jozsa	Balance functions	$O(2^n)$	0(1)	Exponentially
Superdense coding	Transmit classical info	-	1 qubit = 2-bit info (via 1 entangled pair)	-
Quantum teleportation	Teleport quantum states	2-bit info = 1 qubit (via 1 entangled pair)	-	-
Order/Period Finding (QFT)	Factoring, Discrete log	$2^{o(n)} \sim O(2^{n/2})$	$O(n^2)$ or $O(n \log n)$	Exponentially
Grover	Unstructured search	$O(2^n)$	$O(2^{n/2})$	Quadratically

Mixed States, Recaps

- Pure state: Can be described by a state vector
- Mixed state: Cannot ...

Small Exercise: (pure or mixed)

- 1. The initial state of system 1 is ____.
- 2. The states of systems 1 and 2 (after H and CNOT) are both _____
- 3. The state of the total system (after H and CNOT) is _____.

Mixed States, Recaps

• Pure state: Can be described by a state vector

• Mixed state: Cannot ...

How can we describe mixed states?

Small Exercise: (pure or mixed)

- 1. The initial state of system 1 is pure.
- 2. The states of systems 1 and 2 (after H and CNOT) are both mixed.
- 3. The state of the total system (after H and CNOT) is pure.

- Let $\{|\psi_i\rangle\}_i$ be a set of pure states, where i is an index
- Suppose that a quantum system is in $|\psi_i\rangle$ with probability p_i (s.t. $\sum_i p_i = 1$)
- Then we write the **density operator** ho of the system as

$$\boldsymbol{
ho} = \sum_i p_i \, |\psi_i\rangle\langle\psi_i|$$

- Examples:
 - A single-qubit system with state $|0\rangle$
 - A single-qubit system with state $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$
 - A single-qubit system that is in state $|0\rangle$ with probability $\frac{1}{2}$ and in state $|1\rangle$ with probability $\frac{1}{2}$

• $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ (where $\sum_i p_i = 1$)

What's the difference between the states of the two systems?

System 1: Sample two bits b_1b_2 uniformly at random, and set its state as $|b_1b_2\rangle$

System 2:
$$\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

• $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ (where $\sum_i p_i = 1$)

What's the difference between the states of the two systems?

System 1: Sample two bits b_1b_2 uniformly at random, and set its state as $|b_1b_2\rangle$

System 2:
$$\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

- $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ (where $\sum_i p_i = 1$)
- Density operator provides another way to formulate postulates of quantum computing:

Postulate	State vector	Density operator
Describing the state of a system	$ \psi angle = \sum_i lpha_i \psi_i angle$	$oldsymbol{ ho} = \sum_i p_i \psi_i angle \langle \psi_i $
Unitary transformation	$ \psi angle\mapsto \pmb{U} \psi angle$	$oldsymbol{ ho}\mapsto U ho U^\dagger$
Quantum	$p(m) = \langle \psi M_m^{\dagger} M_m \psi \rangle,$	$p(m) = \mathbf{tr} \big(M_m^{\dagger} M_m \boldsymbol{\rho} \big),$
measurement $\{M_m\}_m$	$ \psi_m angle=rac{M_m}{\sqrt{p(m)}} \psi angle$	$\boldsymbol{\rho}_m = \frac{{}^{M_m}\boldsymbol{\rho}{}^{M_m^{\dagger}}}{p(m)}$
Composite system	$ \psi_1 angle\otimes\cdots\otimes \psi_n angle$	$ oldsymbol{ ho}_1 angle\otimes\cdots\otimes oldsymbol{ ho}_n angle$

Trace

• The sum of diagonal elements:

$$tr(M) = \sum_{i} M_{ii}$$

- Properties of trace:
 - Linearity: tr(A + B) = tr(A) + tr(B), $tr(z \cdot A) = z \cdot tr(A)$
 - Cyclicity: tr(AB) = tr(BA) (similarly, tr(ABC) = tr(CAB) = tr(BCA)...)
- Several facts implied by Cyclicity:
 - $tr(U\rho U^{\dagger}) = tr(\rho)$
 - $tr(M|\psi\rangle\langle\psi|) = tr(\langle\psi|M|\psi\rangle) = \langle\psi|M|\psi\rangle$

Trace

- The sum of diagonal elements: $tr(M) = \sum_{i} M_{ii}$
- Properties of trace:
 - Linearity: tr(A + B) = tr(A) + tr(B), $tr(z \cdot A) = z \cdot tr(A)$
 - Cyclicity: tr(AB) = tr(BA) (similarly, tr(ABC) = tr(CAB) = tr(BCA)...)
- Several facts implied by Cyclicity:
 - $tr(U\rho U^{\dagger}) = tr(\rho)$
 - $tr(M|\psi\rangle\langle\psi|) = tr(\langle\psi|M|\psi\rangle) = \langle\psi|M|\psi\rangle$, (and thus $tr(|\psi\rangle\langle\psi|) = \langle\psi|\psi\rangle = 1$)
- Some examples:
 - Unitary transformation formulated by state vectors v.s. by density operators
 - Measurement formulated by state vectors v.s. by density operators

Trace

- Criterion to decide if a state is mixed or pure: Let ho be the density operator of a quantum system.
 - $tr(\rho^2) < 1$: Mixed state
 - $tr(\rho^2) = 1$: Pure state

- Let:
 - A and B be two quantum systems
 - Let $|a_1\rangle$ and $|a_2\rangle$ be any two state vectors defined over (the state space of) A
 - Let $|b_1\rangle$ and $|b_2\rangle$ be any two state vectors defined over B
- Partial Trace:

$$tr_B(|a_1\rangle\langle a_2|\otimes |b_1\rangle\langle b_2|)\coloneqq |a_1\rangle\langle a_2|\cdot tr(|b_1\rangle\langle b_2|)$$

- Remark:
 - 1. tr maps an operator onto a complex number, but tr_B maps an operator onto an operator.
 - 2. The operator from tr_B is an operator defined over A

- Let:
 - A and B be two quantum systems
 - Let ρ_{AB} be the state of the state space of the composite system $A \otimes B$
- Reduced Density Operator of A:

$$\boldsymbol{\rho}_{A}\coloneqq \boldsymbol{tr}_{B}(\boldsymbol{\rho}_{AB})$$

- Examples (of calculating ρ_A):
 - 1. $\rho_{AB} = \rho \otimes \sigma$, where ρ is defined over A and σ is defined over B
 - 2. $\rho_{AB} = |00\rangle\langle00| (= |0\rangle\langle0| \otimes |0\rangle\langle0|)$
 - 3. $\rho_{AB} = \left(\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) \otimes \left(\frac{|0\rangle |1\rangle}{\sqrt{2}} \right) \left(\left(\frac{\langle 0| + \langle 1|}{\sqrt{2}} \right) \otimes \left(\frac{\langle 0| \langle 1|}{\sqrt{2}} \right) \right)$

• The final state is $\rho_{12}=\left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right)\otimes\left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right)$

•
$$\rho_1 = tr_2(\rho_{12}) = ?$$

• The final state is $\rho_{12}=\left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right)\otimes\left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right)$

•
$$\rho_1 = tr_2(\rho_{12}) = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$$

•
$$ho = |\psi\rangle\langle\psi|$$
, where $|\psi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$

•
$$\rho' = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$$

- $\rho = |\psi\rangle\langle\psi|$, where $|\psi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$
 - $tr(\rho) = 1 \Rightarrow A$ pure state.
 - We "somehow" know the state of the system with **certainty** (i.e., the state is $|\psi\rangle$ with probability 1)
 - More generally, $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, we still know the state of the system with **certainty** (though we do not know α and β , the system is still **in a definite pure state...**)

•
$$\rho' = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$$

- $\rho = |\psi\rangle\langle\psi|$, where $|\psi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$
 - $tr(\rho) = 1 \Rightarrow A$ pure state.
 - We "somehow" know the state of the system with **certainty** (i.e., the state is $|\psi\rangle$ with probability 1)
 - More generally, $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, we still know the state of the system with **certainty** (though we do not know α and β , the system is still **in a definite pure state...**)
- $\rho' = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$
 - $tr(\rho) = \frac{1}{2} < 1 \Rightarrow A$ mixed state
 - We are uncertain about the exact state the system is in...

Single-qubit System 1
$$(|0\rangle)$$
 H ρ' Single-qubit System 2 $(|0\rangle)$

- $\rho' = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$
 - $tr(\rho) = \frac{1}{2} < 1 \Rightarrow A \text{ mixed state}$
 - We are uncertain about the exact state the system is in...

- $\rho' = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$
 - $tr(\rho) = \frac{1}{2} < 1 \Rightarrow A$ mixed state
 - We are uncertain about the exact state the system is in...
 - The measurement (on system 2) outcome is b with probability $\frac{1}{2}$, corresponding to the state and the probability distribution of system 1...

- $\rho' = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$
 - $tr(\rho) = \frac{1}{2} < 1 \Rightarrow A$ mixed state
 - We are uncertain about the exact state the system is in...
 - The measurement (on system 2) outcome is b with probability $\frac{1}{2}$, corresponding to the state and the probability distribution of system 1...

What if Bob tells the measurement outcome to Alice?

•
$$\rho' = |b\rangle\langle b|$$

•
$$\rho' = |b\rangle\langle b|$$

- If Bob sends b to Alice, then $\rho' = |b\rangle\langle b|$.
- If not, $\rho' = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$ in Alice's view. (No information about b at all!)

Total states:
$$\begin{aligned} |\phi_0\rangle & |\phi_1\rangle & |\phi_2\rangle \\ &= \sum_{b_1,b_2 \in \{0,1\}} \! \left|\beta_{b_1b_2}\right\rangle \! \boldsymbol{U}_{\boldsymbol{b_2b_1}}^\dagger |\psi\rangle & = \left|\beta_{b_1b_2}\right\rangle \! \boldsymbol{U}_{\boldsymbol{b_2b_1}}^\dagger |\psi\rangle & = \left|\beta_{b_1b_2}\right\rangle \otimes |\psi\rangle \end{aligned}$$

Total states:
$$\begin{aligned} |\phi_0\rangle & |\phi_1\rangle & |\phi_2\rangle \\ &= \sum_{b_1,b_2 \in \{0,1\}} \! \left|\beta_{b_1b_2}\right\rangle \! \boldsymbol{U}_{\boldsymbol{b_2b_1}}^\dagger |\psi\rangle & = \left|\beta_{b_1b_2}\right\rangle \! \boldsymbol{U}_{\boldsymbol{b_2b_1}}^\dagger |\psi\rangle & = \left|\beta_{b_1b_2}\right\rangle \otimes |\psi\rangle \end{aligned}$$

Total states:
$$|\phi_0\rangle \\ = \sum_{b_1,b_2 \in \{0,1\}} |\beta_{b_1b_2}\rangle \pmb{U}_{b_2b_1}^\dagger |\psi\rangle \qquad |\phi_1\rangle = 2$$

$$\begin{array}{ll} \textbf{Total states:} & |\phi_0\rangle \\ &= \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2}\big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \\ &= \frac{1}{4} \sum_{b_1,b_1 \in \{0,1\}} \big|\beta_{b_1b_2}\big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_1 \in \{0,1\}} \big|\beta_{b_1b_2}\big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2}\big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2}\big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2}\big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big\rangle \textbf{\textit{U}}_{b_2b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \big| \textbf{\textit{U}}_{b_2b_1} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in \{0,1\}} \big|\beta_{b_1b_2} \langle \psi | \\ &= \frac{1}{4} \sum_{b_1,b_2 \in$$

$$\begin{aligned} \boldsymbol{\rho_{bob}} &= \boldsymbol{tr_{alice}}(\boldsymbol{\rho_1}) = \boldsymbol{tr_{alice}} \bigg(\frac{1}{4} \sum_{b_1, b_1 \in \{0,1\}} \big| \beta_{b_1 b_2} \big\rangle \boldsymbol{U}_{b_2 b_1}^{\dagger} |\psi\rangle \big\langle \beta_{b_1 b_2} \big| \boldsymbol{U}_{b_2 b_1} \langle \psi | \bigg) \\ &= \boldsymbol{I/2} \end{aligned}$$

• Quantum teleportation: Transmit a single-qubit state $|\psi
angle$.

$$\begin{aligned} \boldsymbol{\rho_{bob}} &= \boldsymbol{tr_{alice}}(\boldsymbol{\rho}_1) = \boldsymbol{tr_{alice}} \bigg(\frac{1}{4} \sum_{b_1, b_1 \in \{0,1\}} \middle| \beta_{b_1 b_2} \middle\rangle \boldsymbol{U}_{b_2 b_1}^{\dagger} \middle| \psi \middle\rangle \middle\langle \beta_{b_1 b_2} \middle| \boldsymbol{U}_{b_2 b_1} \middle\langle \psi \middle| \bigg) \\ &= \boldsymbol{I/2} \text{ (independent of } |\psi \rangle)! \end{aligned}$$

If Alice does not send b_1b_2 to Bob,

then Bob learns **nothing** about $|\psi\rangle$

Reference

- [NC00]: Sections 2.4, 8.3.1, and 9.2.1
- **[KLM07]:** Section 3.5
- Purification: [NC00, Section 2.5] and [KLM07, Section 3.5.2]

Next Topics

- Quantum key distribution
- Quantum money
- Summary of this course

Trace Distance

- Let D_1 and D_2 be two probability distributions defined over the same probability space
- Define $D(m) = p_m$, where p_m is the probability that the sample is m
- Trace distance between D_1 and D_2 :

$$\mathbf{TD}(D_1, D_2) \coloneqq \frac{1}{2} \sum_{m} |D_1(m) - D_2(m)|$$

- Trace distance measures how close the two distributions are.
- Example: Biased coin vs Fair coin

Trace Distance

- Let ρ_1 and ρ_2 be two density operators
- Trace distance between ρ_1 and ρ_2 :

$$\mathbf{TD}(\rho_1, \rho_2) \coloneqq \frac{1}{2} tr(|\rho_1 - \rho_2|)$$

- $\mathbf{TD}(\rho_1, \rho_2)$ bound the trace distance between the measurement distributions of ρ_1 and ρ_2 .
 - Namely, let D_1 and D_2 be the measurement distributions of ρ_1 and ρ_2 , respectively.
 - Then $\mathbf{TD}(D_1, D_2) \leq \mathbf{TD}(\rho_1, \rho_2)$ (regardless of what measurement basis we choose...)