
Quantum Computing
• Week 13 (July 16-17, 2025)

• Topics:
• A summary of quantum algorithms
• Pure states and mixed states
• Density operator and trace
• Partial trace and partial measurement
• Reduced density operator



• Quantum algorithms that we have studied so far:
• Deutsch-Jozsa algorithm
• Superdense coding
• Quantum teleportation
• Quantum Fourier transformation and order finding
• Grover search algorithm

Quantum Algorithms



Quantum Algorithms

Algorithm Addressing 
problem

Classical 
“Complexity” Quantum “Complexity” Improvement

Deutsch-Jozsa Balance functions 𝑂 2𝑛 𝑂 1 Exponentially

Superdense 
coding

Transmit 
classical info - 1 qubit = 2-bit info

(via 1 entangled pair) -

Quantum 
teleportation

Teleport 
quantum states

2-bit info = 1 qubit
(via 1 entangled pair) - -

Order/Period 
Finding (QFT)

Factoring, 
Discrete log 2𝑜 𝑛 ~𝑂(2𝑛/2) 𝑂 𝑛2  or 𝑂 𝑛 log 𝑛  Exponentially

Grover Unstructured 
search 𝑂 2𝑛 𝑂 2𝑛/2 Quadratically



Mixed States, Recaps

• Pure state: Can be described by a state vector

• Mixed state: Cannot …

|0⟩

|0⟩

𝐻
00 + 11

2

Single-qubit
System 1

Single-qubit
System 2

Small Exercise: (pure or mixed)

1.  The initial state of system 1 is ____.

2.  The states of systems 1 and 2 (after H and CNOT) are both ____.

3.  The state of the total system (after H and CNOT) is ____.



Mixed States, Recaps

• Pure state: Can be described by a state vector

• Mixed state: Cannot …

|0⟩

|0⟩

𝐻
00 + 11

2

Single-qubit
System 1

Single-qubit
System 2

Small Exercise: (pure or mixed)

1.  The initial state of system 1 is pure.

2.  The states of systems 1 and 2 (after H and CNOT) are both mixed.

3.  The state of the total system (after H and CNOT) is pure.

How can we describe 
mixed states?



Density Operator

• Let 𝜓𝑖 𝑖  be a set of pure states, where 𝑖 is an index

• Suppose that a quantum system is in 𝜓𝑖  with probability 𝑝𝑖  (s.t. σ𝑖 𝑝𝑖 = 1)

• Then we write the density operator 𝝆 of the system as 

• Examples: 
• A single-qubit system with state 0

• A single-qubit system with state 0 + 1

2

• A single-qubit system that is in state 0  with probability 1
2

 and in state 1  with probability 1
2

 

𝝆 = ෍

𝑖

𝑝𝑖 𝜓𝑖 𝜓𝑖



Density Operator

• 𝝆 = σ𝑖 𝑝𝑖 𝜓𝑖 𝜓𝑖  (where σ𝑖 𝑝𝑖 = 1)

What’s the difference between the states of the two systems?

System 1: Sample two bits 𝑏1𝑏2 uniformly at random, and set its state as 𝑏1𝑏2

System 2: 00 + 01 + 10 + 11

2



Density Operator

• 𝝆 = σ𝑖 𝑝𝑖 𝜓𝑖 𝜓𝑖  (where σ𝑖 𝑝𝑖 = 1)

What’s the difference between the states of the two systems?

System 1: Sample two bits 𝑏1𝑏2 uniformly at random, and set its state as 𝑏1𝑏2

System 2: 00 + 01 + 10 + 11

2

𝝆1 =
1

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝝆2 =
1

4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



Density Operator

• 𝝆 = σ𝑖 𝑝𝑖 𝜓𝑖 𝜓𝑖  (where σ𝑖 𝑝𝑖 = 1)

• Density operator provides another way to formulate postulates of quantum computing:

Postulate State vector Density operator

Describing the state 
of a system

|𝜓⟩ = ෍

𝑖

𝛼𝑖 𝜓𝑖 𝝆 = ෍

𝑖

𝑝𝑖 𝜓𝑖 𝜓𝑖

Unitary transformation 𝜓 ↦ 𝑼|𝜓⟩ 𝝆 ↦ 𝑼𝝆𝑼†

Quantum 
measurement
𝑀𝑚 𝑚 

𝑝 𝑚 = 𝜓 𝑀𝑚
† 𝑀𝑚 𝜓 ,

𝜓𝑚 =
𝑀𝑚

𝑝 𝑚
𝜓  

𝑝 𝑚 = 𝐭𝐫 𝑀𝑚
† 𝑀𝑚𝝆 ,

𝝆𝑚 =
𝑀𝑚𝝆𝑀𝑚

†

𝑝 𝑚
 

Composite system 𝜓1 ⊗ ⋯ ⊗ 𝜓𝑛 𝝆1 ⊗ ⋯ ⊗ 𝝆𝑛



• The sum of diagonal elements:

• Properties of trace:
▪ Linearity: 𝒕𝒓 𝐴 + 𝐵 = 𝒕𝒓 𝐴 + 𝒕𝒓(𝐵), 𝒕𝒓 𝑧 ⋅ 𝐴 = 𝑧 ⋅ 𝒕𝒓 𝐴

▪ Cyclicity: 𝒕𝒓 𝐴𝐵 = 𝒕𝒓 𝐵𝐴  (similarly, 𝒕𝒓 𝐴𝐵𝐶 = 𝒕𝒓 𝐶𝐴𝐵 = 𝒕𝒓 𝐵𝐶𝐴 ...) 

• Several facts implied by Cyclicity:
• 𝒕𝒓 𝑼𝝆𝑼† = 𝒕𝒓 𝝆

• 𝒕𝒓 𝑴 𝜓 𝜓 = 𝒕𝒓 𝜓 𝑴 𝜓 = 𝜓 𝑴 𝜓

Trace

𝒕𝒓(𝑀) = ෍

𝑖

𝑀𝑖𝑖



• The sum of diagonal elements:

• Properties of trace:
▪ Linearity: 𝒕𝒓 𝐴 + 𝐵 = 𝒕𝒓 𝐴 + 𝒕𝒓(𝐵), 𝒕𝒓 𝑧 ⋅ 𝐴 = 𝑧 ⋅ 𝒕𝒓 𝐴

▪ Cyclicity: 𝒕𝒓 𝐴𝐵 = 𝒕𝒓 𝐵𝐴  (similarly, 𝒕𝒓 𝐴𝐵𝐶 = 𝒕𝒓 𝐶𝐴𝐵 = 𝒕𝒓 𝐵𝐶𝐴 ...) 

• Several facts implied by Cyclicity:
• 𝒕𝒓 𝑼𝝆𝑼† = 𝒕𝒓 𝝆

• 𝒕𝒓 𝑴 𝜓 𝜓 = 𝒕𝒓 𝜓 𝑴 𝜓 = 𝜓 𝑴 𝜓 , (and thus 𝒕𝒓 𝜓 𝜓 = 𝜓 𝜓⟩ = 1)

• Some examples:
• Unitary transformation formulated by state vectors v.s. by density operators
• Measurement formulated by state vectors v.s. by density operators

Trace

𝒕𝒓(𝑀) = ෍

𝑖

𝑀𝑖𝑖



• Criterion to decide if a state is mixed or pure: Let 𝝆 be the density operator of a quantum system.
• 𝒕𝒓 𝝆2 < 1: Mixed state
• 𝒕𝒓 𝝆2 = 1: Pure state

Trace



• Let:
• 𝐴 and 𝐵 be two quantum systems
• Let 𝑎1  and 𝑎2  be any two state vectors defined over (the state space of) 𝐴
• Let 𝑏1  and 𝑏2  be any two state vectors defined over 𝐵

• Partial Trace:

• Remark:
1.  𝒕𝒓 maps an operator onto a complex number, but 𝒕𝒓𝐵 maps an operator onto an operator.
2. The operator from 𝒕𝒓𝐵 is an operator defined over 𝐴

Partial Trace and Reduced Density Operator

𝒕𝒓𝐵 𝑎1 𝑎2 ⊗ 𝑏1 𝑏2 ≔ 𝑎1 𝑎2 ⋅ 𝒕𝒓 𝑏1 𝑏2



• Let:
• 𝐴 and 𝐵 be two quantum systems
• Let 𝝆𝐴𝐵 be the state of the state space of the composite system 𝐴 ⊗ 𝐵

• Reduced Density Operator of 𝐴 :

• Examples (of calculating 𝝆𝐴) :
1.  𝝆𝐴𝐵 = 𝜌 ⊗ 𝜎, where 𝜌 is defined over 𝐴 and 𝜎 is defined over 𝐵
2.  𝝆𝐴𝐵 = 00 00 = 0 0 ⊗ 0 0

3.  𝝆𝐴𝐵 =
0 + 1

2
⊗

0 − 1

2

0 + 1

2
⊗

0 − 1

2

Partial Trace and Reduced Density Operator

𝝆𝐴 ≔ 𝒕𝒓𝐵 𝝆𝐴𝐵



Partial Trace and Reduced Density Operator

• The final state is 𝝆12 =
00 + 11

2
⊗

00 + 11

2

• 𝝆1 = 𝒕𝒓2 𝝆12 =?

|0⟩

|0⟩

𝐻
00 + 11

2

Single-qubit
System 1

Single-qubit
System 2



Partial Trace and Reduced Density Operator

• The final state is 𝝆12 =
00 + 11

2
⊗

00 + 11

2

• 𝝆1 = 𝒕𝒓2 𝝆12 =
1

2
0 0 +

1

2
1 1

|0⟩

|0⟩

𝐻
00 + 11

2

Single-qubit
System 1

Single-qubit
System 2



Pure state and Mixed state

• 𝝆 = 𝜓 𝜓 , where 𝜓 =
0 + 1

2

• 𝒕𝒓 𝝆 = 1 => A pure state.
• We “somehow” know the state of the system with certainty (i.e., the state is 𝜓  with probability 1)
• More generally, 𝜓 = 𝛼 0 + 𝛽 1 , we still know the state of the system with certainty (though 

we do not know 𝛼 and 𝛽, the system is still in a definite pure state...)

• 𝝆′ =
1

2
0 0 +

1

2
1 1

• 𝒕𝒓 𝝆 =
1

2
< 1 => A mixed state

• We “somehow” know the state with certainty (i.e., the state is 𝜓  with probability 1)
• More generally, 𝜓 = 𝛼 0 + 𝛽 1 , we still know the state with certainty (though we do not 

know 𝛼, 𝛽...
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1
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1 1
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Pure state and Mixed state

• 𝝆 = 𝜓 𝜓 , where 𝜓 =
0 + 1

2

• 𝒕𝒓 𝝆 = 1 ⇒ A pure state.
• We “somehow” know the state of the system with certainty (i.e., the state is 𝜓  with probability 1)
• More generally, 𝜓 = 𝛼 0 + 𝛽 1 , we still know the state of the system with certainty (though 

we do not know 𝛼 and 𝛽, the system is still in a definite pure state...)

• 𝝆′ =
1

2
0 0 +

1

2
1 1

• 𝒕𝒓 𝝆 =
1

2
< 1 ⇒ A mixed state

• We are uncertain about the exact state the system is in...



• 𝝆 = 𝜓 𝜓 , where 𝜓 =
0 + 1

2

• 𝒕𝒓 𝝆 = 1 ⇒ A pure state.
• We “somehow” know the state of the system with certainty (i.e., the state is 𝜓  with probability 1)
• More generally, 𝜓 = 𝛼 0 + 𝛽 1 , we still know the state of the system with certainty (though 

we do not know 𝛼 and 𝛽, the system is still in a definite pure state...)

• 𝝆′ =
1

2
0 0 +

1

2
1 1

• 𝒕𝒓 𝝆 =
1

2
< 1 ⇒ A mixed state

• We are uncertain about the exact state the system is in...

Pure state and Mixed state

|0⟩

|0⟩

𝐻
Single-qubit

System 1

Single-qubit
System 2

𝝆′



• 𝝆 = 𝜓 𝜓 , where 𝜓 =
0 + 1

2

• 𝒕𝒓 𝝆 = 1 ⇒ A pure state.
• We “somehow” know the state of the system with certainty (i.e., the state is 𝜓  with probability 1)
• More generally, 𝜓 = 𝛼 0 + 𝛽 1 , we still know the state of the system with certainty (though 

we do not know 𝛼 and 𝛽, the system is still in a definite pure state...)

• 𝝆′ =
1

2
0 0 +

1

2
1 1

• 𝒕𝒓 𝝆 =
1

2
< 1 ⇒ A mixed state

• We are uncertain about the exact state the system is in...

• The measurement (on system 2) outcome is 𝑏 with probability 1
2

, corresponding to the state 
and the probability distribution of system 1...

Pure state and Mixed state

|0⟩

|0⟩

𝐻
Single-qubit

System 1

Single-qubit
System 2

𝝆′



• 𝝆 = 𝜓 𝜓 , where 𝜓 =
0 + 1

2

• 𝒕𝒓 𝝆 = 1 ⇒ A pure state.
• We “somehow” know the state of the system with certainty (i.e., the state is 𝜓  with probability 1)
• More generally, 𝜓 = 𝛼 0 + 𝛽 1 , we still know the state of the system with certainty (though 

we do not know 𝛼 and 𝛽, the system is still in a definite pure state...)

• 𝝆′ =
1

2
0 0 +

1

2
1 1

• 𝒕𝒓 𝝆 =
1

2
< 1 ⇒ A mixed state

• We are uncertain about the exact state the system is in...

• The measurement (on system 2) outcome is 𝑏 with probability 1
2

, corresponding to the state 
and the probability distribution of system 1...

Pure state and Mixed state

|0⟩

|0⟩

𝐻
Single-qubit

System 1 
(Alice)

Single-qubit
System 2 

(Bob)

What if Bob tells the 
measurement outcome 
to Alice?

𝝆′



• 𝝆 = 𝜓 𝜓 , where 𝜓 =
0 + 1

2

• 𝒕𝒓 𝝆 = 1 ⇒ A pure state.
• We “somehow” know the state of the system with certainty (i.e., the state is 𝜓  with probability 1)
• More generally, 𝜓 = 𝛼 0 + 𝛽 1 , we still know the state of the system with certainty (though 

we do not know 𝛼 and 𝛽, the system is still in a definite pure state...)

• 𝝆′ = 𝑏 𝑏

Pure state and Mixed state

|0⟩

|0⟩

𝐻
Single-qubit

System 1 
(Alice)

Single-qubit
System 2 

(Bob)

𝑏

𝝆′ = 𝑏 𝑏



• 𝝆 = 𝜓 𝜓 , where 𝜓 =
0 + 1

2

• 𝒕𝒓 𝝆 = 1 ⇒ A pure state.
• We “somehow” know the state of the system with certainty (i.e., the state is 𝜓  with probability 1)
• More generally, 𝜓 = 𝛼 0 + 𝛽 1 , we still know the state of the system with certainty (though 

we do not know 𝛼 and 𝛽, the system is still in a definite pure state...)

• 𝝆′ = 𝑏 𝑏

Pure state and Mixed state

|0⟩

|0⟩

𝐻
Single-qubit

System 1 
(Alice)

Single-qubit
System 2 

(Bob)

𝑏

𝝆′ = 𝑏 𝑏

• If Bob sends 𝑏 to Alice, then 𝝆′ = 𝑏 𝑏 .

• If not, 𝝆′ =
1

2
0 0 +

1

2
1 1  in Alice’s view. 

(No information about 𝑏 at all!)



• Quantum teleportation: Transmit a single-qubit state 𝜓 .

Another look at Quantum Teleportation

00 + 11

2
Bob

Alice

𝒃𝟏𝒃𝟐

𝜓

Bell

𝑼𝒃𝟐𝒃𝟏

Total states: 𝜙2  
= 𝛽𝑏1𝑏2

⊗ 𝜓

𝜙0

= σ𝑏1,𝑏2∈{0,1} 𝛽𝑏1𝑏2
𝑼𝒃𝟐𝒃𝟏

† 𝜓  
𝜙1

= 𝛽𝑏1𝑏2
𝑼𝒃𝟐𝒃𝟏

† 𝜓



• Quantum teleportation: Transmit a single-qubit state 𝜓 .

Another look at Quantum Teleportation

00 + 11

2
Bob

Alice

𝒃𝟏𝒃𝟐

𝜓

Bell

𝑼𝒃𝟐𝒃𝟏

What if Alice does not 
send 𝒃𝟏 and 𝒃𝟐 to Bob?

Total states: 𝜙2  
= 𝛽𝑏1𝑏2

⊗ 𝜓

𝜙0

= σ𝑏1,𝑏2∈{0,1} 𝛽𝑏1𝑏2
𝑼𝒃𝟐𝒃𝟏

† 𝜓  
𝜙1

= 𝛽𝑏1𝑏2
𝑼𝒃𝟐𝒃𝟏

† 𝜓



• Quantum teleportation: Transmit a single-qubit state 𝜓 .

Another look at Quantum Teleportation

00 + 11

2
Bob

Alice

𝒃𝟏𝒃𝟐

𝜓

Bell

Total states: 𝜙0

= σ𝑏1,𝑏2∈{0,1} 𝛽𝑏1𝑏2
𝑼𝒃𝟐𝒃𝟏

† 𝜓  𝜙1 =?



• Quantum teleportation: Transmit a single-qubit state 𝜓 .

Another look at Quantum Teleportation

00 + 11

2
Bob

Alice

𝒃𝟏𝒃𝟐

𝜓

Bell

Total states: 𝜙0

= σ𝑏1,𝑏2∈{0,1} 𝛽𝑏1𝑏2
𝑼𝑏2𝑏1

† 𝜓  

𝝆1 (the density operator on Bob’s view after Alice’s measurement) 

=
1

4
෍

𝑏1,𝑏1∈{0,1}
𝛽𝑏1𝑏2

𝑼𝑏2𝑏1

† 𝜓 𝛽𝑏1𝑏2
𝑼𝑏2𝑏1

𝜓

If 𝑏1𝑏2 = 00 (with probability 1
4

), 
then the total state is  

𝛽00 𝑼00
† 𝜓 ,

and similarly...



• Quantum teleportation: Transmit a single-qubit state 𝜓 .

Another look at Quantum Teleportation

00 + 11

2
Bob

Alice

𝒃𝟏𝒃𝟐

𝜓

Bell

𝝆𝑏𝑜𝑏 = 𝒕𝒓𝑎𝑙𝑖𝑐𝑒(𝝆1) = 𝒕𝒓𝑎𝑙𝑖𝑐𝑒

1

4
෍

𝑏1,𝑏1∈ 0,1
𝛽𝑏1𝑏2

𝑼𝑏2𝑏1

† 𝜓 𝛽𝑏1𝑏2
𝑼𝑏2𝑏1

𝜓

𝝆𝑏𝑜𝑏 

= 𝑰/2



• Quantum teleportation: Transmit a single-qubit state 𝜓 .

Another look at Quantum Teleportation

00 + 11

2
Bob

Alice

𝒃𝟏𝒃𝟐

𝜓

Bell

𝝆𝑏𝑜𝑏 = 𝒕𝒓𝑎𝑙𝑖𝑐𝑒(𝝆1) = 𝒕𝒓𝑎𝑙𝑖𝑐𝑒

1

4
෍

𝑏1,𝑏1∈ 0,1
𝛽𝑏1𝑏2

𝑼𝑏2𝑏1

† 𝜓 𝛽𝑏1𝑏2
𝑼𝑏2𝑏1

𝜓

𝝆𝑏𝑜𝑏 

= 𝑰/2 (independent of 𝜓 )! 

If Alice does not send 𝒃𝟏𝒃𝟐 to Bob, 
then Bob learns nothing about 𝜓

(...so, there is no faster-than-light 
teleportation here...)



Reference
• [NC00]: Sections 2.4, 8.3.1, and 9.2.1

• [KLM07]: Section 3.5

• Purification: [NC00, Section 2.5] and [KLM07, Section 3.5.2]



Next Topics
• Quantum key distribution

• Quantum money

• Summary of this course



• Let 𝐷1 and 𝐷2 be two probability distributions defined over the same probability space 

• Define 𝐷 𝑚 = 𝑝𝑚, where 𝑝𝑚 is the probability that the sample is 𝑚

• Trace distance between 𝐷1 and 𝐷2:

• Trace distance measures how close the two distributions are.

• Example: Biased coin vs Fair coin

Trace Distance

𝐓𝐃 𝐷1, 𝐷2 ≔
1

2
෍

𝑚

𝐷1 𝑚 − 𝐷2 𝑚



• Let 𝜌1 and 𝜌2 be two density operators

• Trace distance between 𝜌1 and 𝜌2:

• 𝐓𝐃 𝜌1, 𝜌2  bound the trace distance between the measurement distributions of 𝜌1 and 𝜌2.
• Namely, let 𝐷1 and 𝐷2 be the measurement distributions of 𝜌1 and 𝜌2, respectively.
• Then 𝐓𝐃 𝐷1, 𝐷2 ≤ 𝐓𝐃 𝜌1, 𝜌2  (regardless of what measurement basis we choose...)

Trace Distance

𝐓𝐃 𝜌1, 𝜌2 ≔
1

2
𝒕𝒓 𝜌1 − 𝜌2
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