Quantum Computing

* Week 13 (July 16-17, 2025)

* Topics:
* A summary of quantum algorithms
* Pure states and mixed states
* Density operator and trace

* Partial trace and partial measurement
* Reduced density operator




Quantum Algorithms

* Quantum algorithms that we have studied so far:
* Deutsch-Jozsa algorithm
Superdense coding
Quantum teleportation
Quantum Fourier transformation and order finding
Grover search algorithm




Quantum Algorithms

. Addressing Classical « o
Algorithm sl “Complexity” Quantum “Complexity” Improvement

Deutsch-Jozsa Balance functions 02" 0(1) Exponentially

Superdense Transmit ) 1 qubit = 2-bit info )

coding classicalinfo (via 1 entangled pair)

Quantum Teleport 2-bitinfo = 1 qubit _ _

teleportation quantum states (via 1 entangled pair)

Order/Period Factoring, 07 n/2 2 .

Finding (QFT) Bseae s 2 0(2™=) O(n*) or O(nlogn) Exponentially

Unstructured o n/2 ,

Grover search o(2") 0(2 ) Quadratically
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Mixed States, Recaps

* Pure state: Can be described by a state vector

e Mixed state: Cannot...
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Small Exercise: (pure or mixed)

1. The initial state of system 1 is .

! 100) +[11) |
\
vz

2. The states of systems 1 and 2 (after H and CNOQOT) are both .
3. The state of the total system (after H and CNOT) is .




Mixed States, Recaps

* Pure state: Can be described by a state vector

How can we describe

* Mixed state: Cannot ... mixed states?
Single-qubit "/ 0 \“ R \
System 1 \ 0) [ \
£ 100) +[11)
PSRN : !
Single-qubit  / 10) Y A ' V2 K
System2 ! e .. v

~ ~ -

Small Exercise: (pure or mixed)

1. The initial state of system 1 is pure.

2. The states of systems 1 and 2 (after H and CNOT) are both mixed.
3. The state of the total system (after H and CNOT) is pure.




Density Operator

* Let {|y;)}; be a set of pure states, where i is an index

* Suppose that a quantum system is in |;) with probability p; (s.t. },; p; = 1)

* Then we write the density operator p of the system as

p = Z pi [Vl

* Examples:

* Asingle-qubit system with state |0)

* Asingle-qubit system with state IO)\/+E|1>

. Asingle-qubit system that is in state |0) with probability% and in state |1) with probability%
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Density Operator

* p=2;pi Y| (where X, p; = 1)

What’s the difference between the states of the two systems?

System 1: Sample two bits b; b, uniformly at random, and set its state as |b,b,)

|00)+]|01)+|10)+|11)

System 2: >




Density Operator

* p=2;pi Y| (where X, p; = 1)

What’s the difference between the states of the two systems?

System 1: Sample two bits b; b, uniformly at random, and set its state as |b,b,)

System 2:
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Density Operator

* p=2;pi Y| (where X, p; = 1)

* Density operator provides another way to formulate postulates of qguantum computing:

Postulate State vector Density operator
D ibing the stat

escribing the state [Y) = Z a; [¥;) p= 2 i 1)l
of a system i i
Unitary transformation |Y) » UlyY) p - UpUT
Quantum p(m) = (YIM} My [), p(m) = tr(M},Myp),
measurement .

_ My pM

Composite system V1) @ - ® [n) 1p1) ® - ® |pn)




Trace

* The sum of diagonal elements:
tr(M) = Z Mii
i

* Properties of trace:
» Linearity: tr(A+ B) = tr(A) + tr(B), tr(z- A) = z - tr(4)
» Cyclicity: tr(4AB) = tr(BA) (similarly, tr(ABC) = tr(CAB) = tr(BCA)...)

* Several facts implied by Cyclicity:
. tr(UpUT) =tr(p)
* tr(M[Y)Y)) =tr((YIM[Y)) = (Y|M|)
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Trace

The sum of diagonal elements: tr(M) = z M;;
i

Properties of trace:

= Linearity: tr(A + B) = tr(A) + tr(B), tr(z- A) = z - tr(4)

= Cyclicity: tr(AB) = tr(BA) (similarly, tr(ABC) = tr(CAB) = tr(BCA)...)
Several facts implied by Cyclicity:

. tr(UpUT) =tr(p)

« tr(M[YXyl) =tr((YIM|y)) = (YIM[), (and thus tr([YXY]) = PlP) = 1)

* Some examples:
* Unitary transformation formulated by state vectors v.s. by density operators
* Measurement formulated by state vectors v.s. by density operators
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Trace

* Criterion to decide if a state is mixed or pure: Let p be the density operator of a quantum system.
« tr(p?) < 1: Mixed state
« tr(p?) = 1: Pure state
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Partial Trace and Reduced Density Operator

* Let:
A and B be two quantum systems
* Let|aq)and |a,) be any two state vectors defined over (the state space of) 4

* Let |b;) and |b,) be any two state vectors defined over B

 Partial Trace:

trp(la;az| & |b;)Xb2|) = la;Xa,| - tr(IbyXb2|)

e Remark:
1. tr maps an operator onto a complex number, but £rg maps an operator onto an operator.

2. The operator from trp is an operator defined over A




Partial Trace and Reduced Density Operator

* Let:
A and B be two quantum systems
* Let p,p be the state of the state space of the composite system A @ B

* Reduced Density Operator of A :
Pa = trg(pap)

* Examples (of calculating py) :
1. pap = p & ag,where p is defined over A and o is defined over B

2. pap =100)00|(= [0){0] & [0){O])
s o= ((22) 8 (22)) (242) & ()




Partial Trace and Reduced Density Operator

+ The final state is p;, = ('00“'“)) ® ('°°>+'“>)

V2 V2
Single-qubit " ) _n o N
System 1 \ / \
/ ! 100) +]11) |
PSRN : !
Single-qubit / 10) Y A \ V2 K
System 2 \ / W AR R
N /7 ~ -

~ N ——

* py =try(pre) =7




Partial Trace and Reduced Density Operator

+ The final state is p;, = ('00“'“)) ® ('°°>+'“>)

V2 V2
Single-qubit " 0\,
System 1 \ ]
\x_//
Single-qubit  / 10) Y A
System2 ! b

~_

+ p1 = try(p1y) =5 10X0] + 5 1X(1]

\

! 100) +[11) |

\




Pure state and Mixed state

|0)+]1)

© p =), where ) = 2]

+ p' =210)0] +[1)(1]




Pure state and Mixed state

|0)+]1)

* p =)l where [§) = ==
* tr(p) = 1 = A pure state.
* We “somehow” know the state of the system with certainty (i.e., the state is |) with probability 1)

* More generally, [Y) = a|0) + B]1), we still know the state of the system with certainty (though
we do not know a and 3, the system is still in a definite pure state...)

+ p' =210)0] +[1)(1]

NI KASSEL
E

U
\"/ RSITAT



Pure state and Mixed state

|0)+]1)

© p =), where [i) =21

* tr(p) = 1 = A pure state.
* We “somehow” know the state of the system with certainty (i.e., the state is |) with probability 1)

* More generally, [Y) = a|0) + B]1), we still know the state of the system with certainty (though
we do not know a and 3, the system is still in a definite pure state...)

1 1
+ p' =210X0] + 1)1

o tr(p) = % < 1 = A mixed state

* We are uncertain about the exact state the system isin...
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Pure state and Mixed state

-

. ) . // \\
Single-qubit | |O) '
System 1 ' !

-

7 N

Single-qubit /

\
[ \
System 2 N |0> !

~N_-

/

+ p' =210)0] +[1)(1]

o tr(p) = % < 1 = A mixed state

\V

AN

* We are uncertain about the exact state the system isin...




Pure state and Mixed state

-

. ) . // \\
Single-qubit | |O) '
System 1 ' )

-

7 N

Single-qubit 10) Y A
System 2 ' !

S—_-

, 1 1
+ p'=210)0] + 211)(1]
o tr(p) = % < 1 = A mixed state

AN

* We are uncertain about the exact state the system isin...

: : e 1 :
 The measurement (on system 2) outcome is b with probability e corresponding to the state

and the probability distribution of system 1...
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Pure state and Mixed state

Single-qubit /7N ’
I 1
et (o — :

(Alice)
Single-qubit /Y A
System 2 ' 10) ! A f@
(Bob) T-

What if Bob tells the

1 1
* p'=310X0] + 5 [1)(1]
1 measurement outcome
o tr(p) = 5 < 1 = A mixed state to Alice?
* We are uncertain about the exact state the system isin...

 The measurement (on system 2) outcome is b with probability %, corresponding to the state
and the probability distribution of system 1...
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Pure state and Mixed state

-

. ) . // \\
Single-qubit [ |O) '
System 1 ' A

(Alice)
Single-qubit 10) Y A
System2 ! e
(Bob) s=

* p' = |bXb|

AN

p' = |b)bl




Pure state and Mixed state

Single-qubit
System 1
(Alice)

Single-qubit
System 2
(Bob)

* p' = |bXb|

-

s S
/ \
\\_’/
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/ \

L 10) ) @
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* |f Bob sends b to Alice, then p’ = |b){(b]|.

* Ifnot, p’' = %IO)(OI + % |1)(1] in Alice’s view.
(No information about b at all!)

p' = |b)bl




Another look at Quantum Teleportation

* Quantum teleportation: Transmit a single-qubit state |).

)
(‘@ S N Y—

00) + [11)
= %

Total states: [oy ; |p1) |P2)
= Zbl,b26{0,1}|lgb1b2>ubzb1hb) = |,8b1b2>U11;2b1|1/)> = |18b1b2> & ly)
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Another look at Quantum Teleportation

* Quantum teleportation: Transmit a single-qubit state |).
What if Alice does not
send b4 and b, to Bob?
1y

00) +[11) .
-

Total states: [oy ; |p1) |P2)
= Zbl,b26{0,1}|lgb1b2>ubzb1|¢> = |,8b1b2>U11;2b1|1/)> = |18b1b2> Ny
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Another look at Quantum Teleportation

* Quantum teleportation: Transmit a single-qubit state |).

1¥)
N it

Alice
100) + 110
Bob
Total states: [oy +
— Zbl,bze{o,1}|,8b1b2>ubzb1|¢) |¢1> =?




Another look at Quantum Teleportation

* Quantum teleportation: Transmit a single-qubit state |).

If by b, = 00 (with probability <),

|1/J> A/T\S\ then the total state is
f\ |,300)Ugo|l/1),

Bell
Alice and similarly...
00 4 L
Bob
Total states: |¢ ) P (the density operator on Bob’s view after Alice’s measurement)
. O 1
— + _ +
= ToussctonBran)ULp B) =7 ) 1B, )03, 5, 0B, 5, | U, (0
b,,b1€{0,1}
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Another look at Quantum Teleportation

* Quantum teleportation: Transmit a single-qubit state |).

1¥)
N e

00) +[11) .
=

....

Pbob

1
Ppvob = tralice(pl) = tralice <Zz |.8b1b2>U1J52b1|1/)><,8b1b2|Ub2b1<l/)|>
b{,b1€{0,1}
=1/2




Another look at Quantum Teleportation

* Quantum teleportation: Transmit a single-qubit state |).
If Alice does not send b1 b, to Bob,

then Bob learns nothing about |)

(...s0, there is no faster-than-light

1¥) .
{‘@ — b, b, teleportation here...)

00) +[11) .
=

e Ppob

1
Ppvob = tralice(pl) = tralice <Zz |.8b1b2>U252b1|1/J><,3b1b2|Ub2b1<l/)|>
b{,b1€{0,1}

= I /2 (independent of |))!




Reference

* [NCOO]: Sections 2.4, 8.3.1,and 9.2.1
 [KLMO7]: Section 3.5

* Purification: [NCO0O0, Section 2.5] and [KLMO07, Section 3.5.2]




Next Topics

* Quantum key distribution
* Quantum money

« Summary of this course




Trace Distance

Let D, and D, be two probability distributions defined over the same probability space

Define D(m) = p,,,, where p,,, is the probability that the sampleism

Trace distance between D; and D,:

1
TD(D;, D) =5 ) [Dy(m) = Dy (m)

Trace distance measures how close the two distributions are.

Example: Biased coin vs Fair coin

NI KASSEL
E

U
\"/ RSITAT



Trace Distance

* Let p; and p, be two density operators

 Trace distance between p; and p,:

1
TD(p41, p3) = Etr(|P1 — p2l)

 TD(p,, p,) bound the trace distance between the measurement distributions of p; and p,.
* Namely, let D; and D, be the measurement distributions of p; and p,, respectively.
* Then TD(D,,D,) < TD(p4, p,) (regardless of what measurement basis we choose...)
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