
Quantum Computing
• Week 14 (July 23-24, 2025)

• Topics:
• Quantum key distribution
• Quantum money
• Summary of this course
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• Over a public network, an attacker can 
eavesdrop or tamper the conversation..
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• How can we distribute the key?

Decrypt… Decrypt…



• Application scenario: Encrypt your conversation using a secret key 𝒌

• But we first need to share the key 𝒌 in some secure ways:
• Typical example: TLS 1.3 handshake in HTTPS, X3DH in WhatsApp/Signal…
• Security relies on the hardness of Discrete Logarithm (DL)
• DL could be efficiently solved by quantum algorithms (QFT)

• Two ways to fix it:
• Find new intractable problems
• Utilize quantum technique (QKD [BB84])

Key Distribution



• Consider two bases

Quantum Key Distribution
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• Consider two bases

Quantum Key Distribution

0 , 1 + , −

𝐻

We encode the measurement 
result + as 0 and − as 1 



• The sender (Alice) prepares the following classical random bits  

• Encode the data bits via (Weisner Coding):

• Send 𝑒1𝑒2 … 𝑒𝑚  to Bob (via some quantum channels)

Quantum Key Distribution

Data bits: 𝑏1, 𝑏2, 𝑏3, 𝑏4, … , 𝑏𝑚 Encode bits: 𝜃1, 𝜃2, 𝜃3, 𝜃4, … , 𝜃𝑚

𝑒𝑖 ≔ 𝐻𝜃𝑖 𝑏𝑖

Namely, if 𝜃𝑖 = 0, then encode 𝑏𝑖  as 𝑏𝑖  (using the “+” basis);
Otherwise, encode 𝑏𝑖  as 𝐻 𝑏𝑖  (using the “×” basis).



• Upon receiving 𝑒1𝑒2 … 𝑒𝑚 , Bob chooses the following bits uniformly at random  

• Measure 𝑒𝑖  on the “+” basis if 𝜃𝑖
′ = 0 or on the “×” basis if 𝜃𝑖

′ = 1:

• Now the “data bits” that Bob possesses are 𝑏𝑖
′

• Bob tells Alice that he has received and measured 𝑒𝑖

• Then, Alice and Bob announce 𝜃1, 𝜃2, … , 𝜃𝑚 and 𝜃1
′ , 𝜃2

′ , … , 𝜃𝑚
′ , and discard 𝑏𝑖  and 𝑏𝑖

′ if 𝜃𝑖 ≠ 𝜃𝑖
′

Quantum Key Distribution

Measure bits: 𝜃1
′ , 𝜃2

′ , 𝜃3
′ , 𝜃4

′ , … , 𝜃𝑚
′

𝑒𝑖
′ ≔ 𝐻𝜃𝑖

′
𝑒𝑖 = 𝐻𝜃𝑖

′
𝐻𝜃𝑖 𝑏𝑖

𝑒𝑖 𝑒𝑖
′

𝐻𝜃𝑖
′



• Example: 𝑚 = 4

Quantum Key Distribution

𝑏
(Alice’s data bits)

𝜃
(Alice’s encode bits)

𝑒𝑖
(The states Alice sent)

𝜃𝑖
′

(Bob’s measure bits)
𝑏𝑖

′

(The bits Bob measures)

1 1 − 0 0 or 1 (with prob. 1
2

)

0 0 0 0 0

1 0 1 1 0 or 1 (with prob. 1
2

)

0 1 + 1 0
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Measure bits: 𝜃1
′ , 𝜃2

′ , 𝜃3
′ , 𝜃4

′ , … , 𝜃𝑚
′
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′
𝑒𝑖 = 𝐻𝜃𝑖

′
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′

Does announcing 
𝜃1, 𝜃2, … , 𝜃𝑚, 𝜃1

′ , 𝜃2
′ , … , 𝜃𝑚

′  
reveal the bits they shared?



•  𝑏𝑖 = 𝑏𝑖
′ if 𝜃𝑖 = 𝜃𝑖

′ (Namely, the encode basis of Alice = the measure basis of Bob)

• The attacker may disturb the protocol so that 𝑏𝑖 ≠ 𝑏𝑖
′ even if 𝜃𝑖 = 𝜃𝑖

′. How can we detect this?

Disturbance Check in QKD



• After sharing 𝑛 ≈
𝑚

2
 bits 𝑏1 … 𝑏𝑛, Alice and Bob want to check how many (qu)bits are disturbed (eavesdropped 

or modified) by an attacker…

• Let 𝑚 = 4𝑘 for some integer 𝑘. Then 𝑛 ≈ 2𝑘

• Alice first picks 𝑘 bits from 𝑏1 … 𝑏𝑛 uniformly at random: 𝑏𝑖1
… 𝑏𝑖𝑘

.

• Then, Alice sends 𝑖1, … , 𝑖𝑘 and 𝑏𝑖1
… 𝑏𝑖𝑘

 to Bob.

• Bob compares 𝑏𝑖1
… 𝑏𝑖𝑘

 with 𝑏𝑖1

′ … 𝑏𝑖𝑘

′  and discuss with Alice.

• If too many bits differ, then they abort the protocol

• Otherwise, keep the remaining 𝑘 bits and use some standard cryptographic algorithms to derive a key.

Disturbance Check in QKD



• An important property of money (or currency):
• Hard to be copied

• Somehow relevant to some properties of quantum states:
• No-cloning theorem
• Collapse after measurement

Quantum Money



• Weisner Coding: Encode two random bits 𝑏 and 𝜃 as

• If we know 𝜃, then we can perfectly copy the state
• Knowing 𝜃 allows us to perform measurement on the correct basis (“+” or “x”)
• Measurement gives us 𝑏, so we can create 𝐻𝜃|𝑏⟩ again.

• What if 𝜃 is unknown?

Quantum Money

𝑒 ≔ 𝐻𝜃|𝑏⟩



• Weisner Coding: Encode two random bits 𝑏 and 𝜃 as

• If we know 𝜃, then we can perfectly copy the state
• Knowing 𝜃 allows us to perform measurement on the correct basis (“+” or “x”)
• Measurement gives us 𝑏, so we can create 𝐻𝜃|𝑏⟩ again.

• What if 𝜃 is unknown?
• Lemma: The best strategy for cloning such a 𝑒  has winning probability 3

4

• Implication: If we have 𝑛 𝑏𝑖 , 𝜃𝑖  pairs, then cloning 𝑒1𝑒2 … 𝑒𝑛  has winning probability at most 3

4

𝑛

Quantum Money

𝑒 ≔ 𝐻𝜃|𝑏⟩



• A simple but impractical quantum money using Weisner Coding:

• Algorithm for issuing money:

Quantum Money

𝑏1𝑏2𝑏3 … 𝑏𝑛 ←$ 0,1 𝑛

𝜃1𝜃2𝜃3 … 𝜃𝑛 ←$ 0,1 𝑛

€ ≔ |𝑒1𝑒2𝑒3 … 𝑒𝑛⟩

where 𝑒𝑖 ≔ 𝐻𝜃𝑖 𝑏𝑖

The bank keeps the serial number:
𝒔 ≔ 𝑏1 … 𝑏𝑛, 𝜃1 … 𝜃𝑛

Banknote: €
€



• A simple but impractical quantum money using Weisner Coding:

• Algorithm for issuing money:

• Algorithm for verifying money:

Quantum Money

Banknote: €

€

Measure each qubit in € (according to 𝜃1 … 𝜃𝑛) 
and check if the outcome is 𝑏1 … 𝑏𝑛

𝒔 ≔ 𝑏1 … 𝑏𝑛, 𝜃1 … 𝜃𝑛

𝒔 ≔ 𝑏1 … 𝑏𝑛, 𝜃1 … 𝜃𝑛

€



• Security (if the serial number is unknown)

• Drawback: 
• To verify the money, the merchant (not the bank!) needs to know the serial number

Quantum Money

Banknote: €

€

€

…with success probability at most 3

4

𝑛



Reference
• [NC00]: Section 12.6.3

• Qipeng Liu’s lecture note on quantum money: https://drive.google.com/file/d/1bVW-
g8Kv6NDkS1vWd3wX2lgSyRmPQZGm/view 

https://drive.google.com/file/d/1bVW-g8Kv6NDkS1vWd3wX2lgSyRmPQZGm/view
https://drive.google.com/file/d/1bVW-g8Kv6NDkS1vWd3wX2lgSyRmPQZGm/view
https://drive.google.com/file/d/1bVW-g8Kv6NDkS1vWd3wX2lgSyRmPQZGm/view
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