Quantum Computing

- Week 14 (July 23-24, 2025)
- Topics:
 - Quantum key distribution
 - Quantum money
 - Summary of this course

• Application scenario:

• Application scenario:

• Application scenario:

• Application scenario: Encrypt your conversation using a secret key k

• Application scenario: Encrypt your conversation using a secret key k

- Application scenario: Encrypt your conversation using a secret key k
- But we first need to share the key k in some secure ways:
 - Typical example: TLS 1.3 handshake in HTTPS, X3DH in WhatsApp/Signal...
 - Security relies on the hardness of Discrete Logarithm (DL)
 - DL could be efficiently solved by quantum algorithms (QFT)
- Two ways to fix it:
 - Find new intractable problems
 - Utilize quantum technique (QKD [BB84])

• Consider two bases

• Consider two bases

• The sender (Alice) prepares the following classical random bits

Data bits:
$$b_1, b_2, b_3, b_4, \dots, b_m$$
 Encode bits: $\theta_1, \theta_2, \theta_3, \theta_4, \dots, \theta_m$

Encode the data bits via (Weisner Coding):

$$|e_i\rangle \coloneqq H^{\theta_i}|b_i\rangle$$

Namely, if $\theta_i = 0$, then encode b_i as $|b_i\rangle$ (using the "+" basis); Otherwise, encode b_i as $H|b_i\rangle$ (using the "×" basis).

• Send $|e_1e_2...e_m\rangle$ to Bob (via some quantum channels)

• Upon receiving $|e_1e_2...e_m\rangle$, Bob chooses the following bits uniformly at random

Measure bits:
$$\theta_1'$$
, θ_2' , θ_3' , θ_4' , ..., θ_m'

• Measure $|e_i\rangle$ on the "+" basis if $\theta_i'=0$ or on the "×" basis if $\theta_i'=1$:

$$|e_i'\rangle \coloneqq H^{\theta_i'}|e_i\rangle = H^{\theta_i'}H^{\theta_i}|b_i\rangle$$

$$|e_i\rangle$$
 $H^{\theta'_i}$ e'_i

- Now the "data bits" that Bob possesses are b_i'
- Bob tells Alice that he has received and measured $|e_i\rangle$
- Then, Alice and Bob announce $\theta_1, \theta_2, \dots, \theta_m$ and $\theta_1', \theta_2', \dots, \theta_m'$, and discard b_i and b_i' if $\theta_i \neq \theta_i'$

• Example: m = 4

<i>b</i> (Alice's data bits)	θ (Alice's encode bits)	$ e_i angle$ (The states Alice sent)	$ heta_i'$ (Bob's measure bits)	$rac{b_i'}{}$ (The bits Bob measures)
1	1	->	0	$\frac{0 \text{ or 1 (with prob. } \frac{1}{2})}{}$
0	0	0>	0	0
1	0	1>	1	$\frac{0 \text{ or 1 (with prob. } \frac{1}{2})}{}$
0	1	+>	1	0

• Upon receiving $|e_1e_2...e_m\rangle$, Bob chooses the following bits uniformly at random

Measure bits:
$$\theta_1'$$
, θ_2' , θ_3' , θ_4' , ..., θ_m'

• Measure $|e_i\rangle$ on the "+" basis if $\theta_i'=0$ or on the "×" basis if $\theta_i'=1$:

$$|e_i'\rangle \coloneqq H^{\theta_i'}|e_i\rangle = H^{\theta_i'}H^{\theta_i}|b_i\rangle$$

$$|e_i'\rangle$$
 — e_i'

- Now the "data bits" that Bob possesses are b_i'
- Bob tells Alice that he has received and measured $|e_i
 angle$
- Then, Alice and Bob announce $\theta_1, \theta_2, \dots, \theta_m$ and $\theta_1', \theta_2', \dots, \theta_m'$, and discard b_i and b_i' if $\theta_i \neq \theta_i'$

Does announcing $\theta_1, \theta_2, ..., \theta_m, \theta_1', \theta_2', ..., \theta_m'$ reveal the bits they shared?

Disturbance Check in QKD

- $b_i = b_i'$ if $\theta_i = \theta_i'$ (Namely, the encode basis of Alice = the measure basis of Bob)
- The attacker may disturb the protocol so that $b_i \neq b_i'$ even if $\theta_i = \theta_i'$. How can we detect this?

Disturbance Check in QKD

- After sharing $n \approx \frac{m}{2}$ bits $b_1 \dots b_n$, Alice and Bob want to check how many (qu)bits are disturbed (eavesdropped or modified) by an attacker...
- Let m=4k for some integer k. Then $n\approx 2k$
- Alice first picks k bits from $b_1 \dots b_n$ uniformly at random: $b_{i_1} \dots b_{i_k}$.
- Then, Alice sends i_1, \dots, i_k and $b_{i_1} \dots b_{i_k}$ to Bob.
- Bob compares $b_{i_1} \dots b_{i_k}$ with $b'_{i_1} \dots b'_{i_k}$ and discuss with Alice.
- If too many bits differ, then they abort the protocol
- ullet Otherwise, keep the remaining k bits and use some standard cryptographic algorithms to derive a key.

- An important property of money (or currency):
 - Hard to be copied

- Somehow relevant to some properties of quantum states:
 - No-cloning theorem
 - Collapse after measurement

• Weisner Coding: Encode two random bits b and θ as

$$|e\rangle \coloneqq H^{\theta}|b\rangle$$

- If we know θ , then we can perfectly copy the state
 - Knowing θ allows us to perform measurement on the correct basis ("+" or "x")
 - Measurement gives us b, so we can create $H^{\theta}|b\rangle$ again.
- What if θ is unknown?

• Weisner Coding: Encode two random bits b and θ as

$$|e\rangle \coloneqq H^{\theta}|b\rangle$$

- If we know θ , then we can perfectly copy the state
 - Knowing θ allows us to perform measurement on the correct basis ("+" or "x")
 - Measurement gives us b, so we can create $H^{\theta}|b\rangle$ again.
- What if θ is unknown?
 - Lemma: The best strategy for cloning such a $|e\rangle$ has winning probability $\frac{3}{4}$
 - Implication: If we have $n(b_i, \theta_i)$ pairs, then cloning $|e_1e_2...e_n\rangle$ has winning probability at most $\left(\frac{3}{4}\right)^n$

- A simple but impractical quantum money using Weisner Coding:
- Algorithm for issuing money:

The bank keeps the serial number:

$$\mathbf{s} \coloneqq (b_1 \dots b_n, \theta_1 \dots \theta_n)$$

- A simple but impractical quantum money using Weisner Coding:
- Algorithm for issuing money:

• Algorithm for verifying money:

Measure each qubit in $| \in \rangle$ (according to $\theta_1 \dots \theta_n$) and check if the outcome is $b_1 \dots b_n$

Security (if the serial number is unknown)

...with success probability at most $\left(\frac{3}{4}\right)^n$

- Drawback:
 - To verify the money, the merchant (not the bank!) needs to know the serial number

Reference

- **[NC00]:** Section 12.6.3
- Qipeng Liu's lecture note on quantum money: https://drive.google.com/file/d/1bVW-g8Kv6NDkS1vWd3wX2lgSyRmPQZGm/view