
Quantum Computing
• Lecture 2 (April 24, 2025)

• Today:
• Quantum state, qubit, and their linear algebra formulation



• A qubit describes the quantum state of a quantum system

• Abstracted as a mathematical object (i.e., ignore their physical meanings...)

• Two “basic” states 0 , 1
• Dirac (Bra-ket) notations
• In some research papers, is also called a quantum register

• We describe the superposition state of the system using the qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

Qubit

𝜙  = 𝛼 0 + 𝛽 1



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

Qubit

𝜙  = 𝛼 0 + 𝛽 1



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

Qubit

𝜙  = 𝛼 0 + 𝛽 1

Superposition (for single qubit, informal): 𝝓  cannot be written as either 𝟎  or 𝟏



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

Qubit

𝜙  = 𝛼 0 + 𝛽 1

A quick recap of complex numbers ℂ:
• A complex number 𝛼 ∈ ℂ can be written as 𝜶 = 𝒂 + 𝒃𝒊, where 𝑎, 𝑏 are real numbers, and 𝑖 = −1
• If 𝛼 ∈ ℂ and 𝛼 = 𝑎 + 𝑏𝑖, then we write its conjugate as 𝜶∗ = 𝒂 − 𝒃𝒊

• We write 𝛼’s norm as 𝛼 = 𝑎2 + 𝑏2 . We always have 𝛼 = 𝛼∗ = 𝛼𝛼∗

• If 𝜶 = 1, then 𝜶 can also be written as 𝜶 = cos 𝜽 + 𝒊 sin 𝜽  for some 𝜽.
• By Euler’s formula, 𝜶 = cos 𝒙 + 𝒊 sin 𝒙 = 𝒆𝒊𝒙, and |𝒆𝒊𝒙| = 𝟏 



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

• Examples: 

Qubit

𝜙  = 𝛼 0 + 𝛽 1

1

2
0 +

1

2
1 cos 𝜃 0 + 𝑒𝑖𝜓 sin 𝜃 1



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

• Relation between 0  and 1 :
• They should be “easy” to distinguish
• Linear algebra representation:

Qubit as a unit vector

𝜙  = 𝛼 0 + 𝛽 1

0 ≔
1
0

, 1 =
0
1



• We describe the state of a system using the single qubit:

• The numbers 𝛼 and 𝛽 are complex number

• Relation between 0  and 1 :
• They should be “easy” to distinguish
• Linear algebra representation:

𝜙  = 𝛼 0 + 𝛽 1

Some linear algebra:
• Focus on vector spaces over ℂ
• Linear (in)dependence, basis, orthonormal basis, transpose, adjoint, ... 

• We call 𝜓  a “ket” and 𝜓  a “bra”
• Inner product using Dirac (Bra-ket) notations: 𝜙 𝜓

• Easy to see 0 1 = 1 0 = 0 and 0 0 = 1= 1 1

0 ≔
1
0

, 0 ≔ 1∗ 0∗ (= [1 0]), or more generally, if 𝜓 =
𝛼
𝛽 , then 𝜓 = 𝛼∗ 𝛽∗  

Qubit as a unit vector



• We describe the state of a system using the single qubit:
• The numbers 𝛼 and 𝛽 are complex numbers

• A single qubit is a unit vector over ℂ𝟐

• Change basis:

𝜙  = 𝛼 0 + 𝛽 1

= 𝛼 1
0

+ 𝛽
0
1

 =
𝛼
𝛽 ∈ ℂ2

1
0

,
0
1

 is a basis of ℂ𝟐 (known as computational basis ) 

1

2

1
1

,
1

2

1
−1

 is also a basis of ℂ𝟐

𝜙 = 𝜙 𝜙 = 𝛼 2 + 𝛽 2 = 1

Qubit as a unit vector



• Single qubit: 

• Change basis:

• Let ≔
1

2

1
1

 and ≔
1

2

1
−1

, then:

Qubit in Different Bases

𝜙  =
𝛼
𝛽 ∈ ℂ2, 𝜙 = 1

1
0

,
0
1

 is a basis of ℂ𝟐 (known as the computational basis ) 

1

2

1
1

,
1

2

1
−1

 is also a basis of ℂ𝟐. 

𝜙  =
𝛼
𝛽 =

𝛼+𝛽

2
+

𝛼−𝛽

2



• Single qubit: 

• Described by different bases:

• What do they mean? Depends on measurement (will be introduced later)

𝜙  =
𝛼
𝛽 ∈ ℂ2, 𝜙 = 1

𝜙  = 𝛼 0 + 𝛽 1

𝜙  =
𝛼
𝛽 =

𝛼+𝛽

2
+

𝛼−𝛽

2

Qubit in Different Bases



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 ∈ ℂ2

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 =

𝜶+𝜷

𝟐
+

𝜶−𝜷

𝟐

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

• If we measure 𝜙  in the basis { , }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 =

𝜶+𝜷

𝟐
+

𝜶−𝜷

𝟐

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

• If we measure 𝜙  in the basis { , }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 =

𝜶+𝜷

𝟐
+

𝜶−𝜷

𝟐

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2

𝜙  
{ , }

𝑏 =

 with probability
𝜶 + 𝜷

𝟐

2

 with probability
𝜶 − 𝜷

𝟐

2



• Single qubit: 

• If we measure 𝜙  in the computational basis { 0 , 1 }:

• If we measure 𝜙  in the basis { , }:

𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽 =

𝜶+𝜷

𝟐
+

𝜶−𝜷

𝟐

Single qubit measurement

𝜙  
{ 0 , 1 }

𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2

𝜙  
{ , }

It depends on how you define 0, 1, , , 
... (i.e., how you encode the information 

and define its measurement) 

𝑏 =

 with probability
𝜶 + 𝜷

𝟐

2

 with probability
𝜶 − 𝜷

𝟐

2



• Single qubit: 𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

Single qubit measurement

Notes: 

1. We may also call 𝛼 and 𝛽 as amplitudes

2. Why complex numbers? A natural way for describing waves (amplitude + phase)



• Single qubit: 𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

Single qubit measurement

Wrong: The qubit is 0  with probability 𝜶 𝟐 and is 1  with probability 𝜷 𝟐

Correct: The qubit is in a superposition before measurement – in both  0  and  1   at once



• Single qubit: 𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

Single qubit measurement

Can we estimate 𝜶 and 𝜷 by measuring |𝜙⟩ many times?



• Single qubit: 𝜙  = 𝛼 0 + 𝛽 1 =
𝛼
𝛽

Single qubit measurement

Can we estimate 𝜶 and 𝜷 by measuring |𝜙⟩ many times?

No. Because of collapse and no-cloning...

𝜙  𝑏 = ൝
 0 with probability 𝛼2

 1 with probability 𝛽2

𝝓  becomes 𝒃  after measurement... 



• Let 𝜙  = 𝛼 0 + 𝛽 1  be a qubit

• Inner product (to see adjoint and linearity):

• Outer product: 𝜙 𝜙

Inner/Outer Product

𝜙 𝜙 = 𝜙 ⋅ 𝜙 = (𝛼∗ 0 + 𝛽∗ 1 ) ⋅ 𝛼 0 + 𝛽 1 = ⋯ = 1

𝜙  =
𝛼
𝛽 , 𝜙 = 𝛼∗ 𝛽∗ , 𝜙 𝜙 =

𝛼
𝛽 ⋅ 𝛼∗ 𝛽∗ = (a 2 x 2 matrix) 



• Let 𝜙  = 𝛼 0 + 𝛽 1  be a qubit

• Inner product (to see adjoint and linearity):

• Outer product: 𝜙 𝜙

Inner/Outer Product

𝜙 𝜙 = 𝜙 ⋅ 𝜙 = (𝛼∗ 0 + 𝛽∗ 1 ) ⋅ 𝛼 0 + 𝛽 1 = ⋯ = 1

𝜙  =
𝛼
𝛽 , 𝜙 = 𝛼∗ 𝛽∗ , 𝜙 𝜙 =

𝛼
𝛽 ⋅ 𝛼∗ 𝛽∗ = (a 2 x 2 matrix) 

What does 𝜙 𝜙  represents? A projector that project a vector onto the “line” 
(one-dimension linear space) spanned by 𝜙 .



• Let 𝐀 (𝑛1 × 𝑚1) and 𝐁 𝑛2 × 𝑚2  be two arbitrary complex matrices, where

• Then the tensor product of 𝐀 and 𝐁, denoted as 𝐀 ⊗ 𝐁, is defined by

Tensor Product

𝐀 =
𝑎1,1 ⋯ 𝑎1,𝑚1

⋮ ⋱ ⋮
𝑎𝑛1,1 ⋯ 𝑎𝑛1,𝑚1

,  𝐁 = 
𝑏1,1 ⋯ 𝑏1,𝑚2

⋮ ⋱ ⋮
𝑏𝑛2,1 ⋯ 𝑏𝑛2,𝑚2

𝐀 ⊗ 𝐁 =

𝑎1,1𝐁 ⋯ 𝑎1,𝑚1
𝐁

⋮ ⋱ ⋮
𝑎𝑛1,1𝐁 ⋯ 𝑎𝑛1,𝑚1

𝐁
, which is a 𝒏𝟏𝒏𝟐 × 𝒎𝟏𝒎𝟏 matrix 



• Let 𝐀 (𝑛1 × 𝑚1) and 𝐁 𝑛2 × 𝑚2  be two arbitrary complex matrices, where

• Then the tensor product of 𝐀 and 𝐁, denoted as 𝐀 ⊗ 𝐁, is defined by

• One can define tensor product for vectors in a natural way.

• We use tensor product to define multiple qubits

Tensor Product

𝐀 =
𝑎1,1 ⋯ 𝑎1,𝑚1

⋮ ⋱ ⋮
𝑎𝑛1,1 ⋯ 𝑎𝑛1,𝑚1

,  𝐁 = 
𝑏1,1 ⋯ 𝑏1,𝑚2

⋮ ⋱ ⋮
𝑏𝑛2,1 ⋯ 𝑏𝑛2,𝑚2

𝐀 ⊗ 𝐁 =

𝑎1,1𝐁 ⋯ 𝑎1,𝑚1
𝐁

⋮ ⋱ ⋮
𝑎𝑛1,1𝐁 ⋯ 𝑎𝑛1,𝑚1

𝐁
, which is a 𝒏𝟏𝒏𝟐 × 𝒎𝟏𝒎𝟏 matrix 



Multiple Qubits

• In the classical world, an 𝑛-bit string has 2𝑛 possibilities (i.e., 2𝑛 basic states)

• We define multiple qubits (in the computational basis) by an analogous way. 

𝑏𝑛−1𝑏𝑛−2 ⋯ 𝑏1𝑏0  ≔ 𝑏𝑛−1 ⊗ 𝑏𝑛−2 ⊗ ⋯ ⊗ 𝑏1 ⊗ 𝑏0

0 , 1 , 2 , 3 , … , 2𝑛 − 1



Multiple Qubits

• Multiple (𝑛) qubits in the computational basis.

• 2𝑛 basic states: 00 ⋯ 00 , 00 ⋯ 01 , 00 ⋯ 10 , 00 ⋯ 11 , ..., 11 ⋯ 11 , where

• More compact representation:

• An 𝒏-qubit states: A superposition of the 2𝑛 basic states (also a unit vector over ℂ𝟐𝒏
)

𝑏𝑛−1𝑏𝑛−2 ⋯ 𝑏1𝑏0  ≔ 𝑏𝑛−1 ⊗ 𝑏𝑛−2 ⊗ ⋯ ⊗ 𝑏1 ⊗ 𝑏0

0 , 1 , 2 , 3 , … , 2𝑛 − 1

𝝓 = σ𝑖=0
2𝑛−1 𝛼𝑖 𝑖 ,  

where 𝛼𝑖 ∈ ℂ and σ𝑖=0
2𝑛−1 𝛼𝑖

2 = 1



Multiple Qubits

• Multiple qubits in an arbitrary orthonormal basis: 𝜙0 , 𝜙1 , 𝜙2 , ..., 𝜙𝑁−1

• A more general representation:

𝝓 = σ𝑖=0
𝑁−1 𝛼𝑖 𝜙𝑖 ,  

where 𝛼𝑖 ∈ ℂ and σ𝑖=0
𝑁−1 𝛼𝑖

2 = 1



Next Topic

• Linear Operators, Unitaries, Quantum Gates, Entanglement, ...

• More linear algebra

• Next Wednesday: ~50min lecture + 40min exercise & explanation

• Bring your pen and paper (and also your laptop/iPad to check the lecture notes)



References
• [NC00] Quantum Computation and Quantum Information. Michael Nielsen and Isaac Chuang

• Section 1.2 (Bloch sphere representation of a qubit)
• Sections 2.1.1 – 2.1.3

• [KLM07] An Introduction to Quantum Computing. Phillip Kaye, Raymond Laflamme, Michele Mosca
• Sections 2.1, 2.2, and 2.6

• [RP11] Quantum Computing: A Gentle Introduction. Eleanor Rieffel and Wolfgang Polak
• Sections 2.1-2.2, 3.1

• Professor Mark Zhandry’s lecture note.

• Professor Henry Yuen’s lecture note.

https://mzhandry.github.io/courses/2018-Fall-COS597A/ln/LN2.pdf
https://www.henryyuen.net/fall2024/lectures/coms4281_2024_lecture_sept11.pdf
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