
Quantum Computing
• Lecture 3 (April 30, 2025)

• Today:
• Quantum unitary operations



• Sigle-qubit state: The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

• An 𝒏-qubit states (in the computational basis)

• General description: Let { 𝜙0 , 𝜙1 , 𝜙2 , ..., 𝜙𝑁−1 } be an orthonormal basis

Qubit

𝜙  = 𝛼 0 + 𝛽 1

𝝓 = σ𝑖=0
2𝑛−1 𝛼𝑖 𝑖 , where 𝛼𝑖 ∈ ℂ and σ𝑖=0

𝑛−1 𝛼𝑖
2 = 1

𝝓 = σ𝑖=0
𝑁−1 𝛼𝑖 𝜙𝑖 , where 𝛼𝑖 ∈ ℂ and σ𝑖=0

𝑁−1 𝛼𝑖
2 = 1



• Some operations introduced last week:
• Adjoint: 𝑼† = 𝑼∗ 𝑻 = 𝑼𝑻 ∗

• Inner product/Outer product: 𝜓 𝜙 , |𝜓⟩⟨𝜙|

• Tensor product: 𝜙 ⊗ 𝜙 = 𝜙𝜙 , 𝑼𝟏 ⊗ 𝑼𝟐

Qubit



• The Schrödinger equation describes the evolution of the quantum state of an isolated system
• The equation is linear (i.e., any linear combination of solutions is a solution)

• ⇒ The evolution of quantum states is also linear
• Always keep in mind: linear operations ⟺ matrices!

• We use linear operators (or matrices) to describe evolutions of quantum states.

Unitary Operation

Evolution𝝓 𝝓′



• We use linear operators (or matrices) to describe evolutions of quantum states.

• Observations:
• (1) A quantum state – (evolution) → another quantum state
• (2) By definition, a quantum state is a unit vector (normalized condition)

Unitary Operation

Linear 
operator

or
matrix 𝑼

𝝓 𝝓′



• We use linear operators (or matrices) to describe evolutions of quantum states.

• Observations:
• (1) A quantum state – (evolution) → another quantum state
• (2) By definition, a quantum state is a unit vector (normalized condition)

• Quantum evolutions preserve the norm!
• Let 𝑼 denote such a linear operation. For any quantum state 𝝓 , 𝝓 = 𝑼 𝝓 = 𝟏

Unitary Operation

Linear 
operator

or
matrix 𝑼

𝝓 𝝓′



• We use linear operators (or matrices) to describe operations on quantum states.

• Observations:
• (1) A quantum state – (linear operators) → another quantum state
• (2) By definition, a quantum state is a unit vector (normalized condition)

• Quantum evolutions (linear operators or matrices) preserve the norm
• Let 𝑼 denote such an operation. For any quantum state 𝝓 , 𝝓 = 𝑼 𝝓 = 𝟏

Unitary Operation

Linear 
Operator

or
matrix 𝑼

𝝓 𝝓′

Some Linear Algebra – Unitary:
• Unitary matrices (unitary operators, or simply unitaries)
• A square matrix 𝑼 is a unitary if one of the following conditions holds:

• (1) For any 𝝓 , 𝝓 = 𝑼 𝝓

• (2) 𝑼† = 𝑼−𝟏 (or 𝑼†𝑼 = 𝑰)
• ...

•  Exercise: (1) ⟺ (2)

• Hermitian: A matrix (or linear operator) 𝑼 is Hermitian or self-adjoint if 𝑼 = 𝑼†

• Normal operator/matrix: 𝑼𝑼† = 𝑼†𝑼 (but not necessarily = 𝑰)
• Quick thought: Unitary ⟹ Normal



• We use a unitary to describe the evolution of a quantum state.

• In quantum computing, we use unitary operations to operate qubit(s)

Unitary Operation

Unitary 
Operator

𝑼
𝝓 𝝓′ = 𝑼 𝝓



• We use a unitary to describe the evolution of a quantum state.

• In quantum computing, we use unitary operations to operate qubit(s)
• Unitaries are invertible ⟹ Unitary operations are always reversible

• In contrast to classical computing, quantum computing relies on reversible computation

Unitary Operation

Unitary 
Operator

𝑼
𝝓 𝝓′ = 𝑼 𝝓



Unitary 
Operator

𝑼
𝝓 𝝓′ = 𝑼 𝝓

• We use a unitary to describe the evolution of a quantum state.

• In quantum computing, we use unitary operations to operate qubit(s)
• Unitaries are invertible ⟹ Unitary operations are always reversible

• In contrast to classical computing, quantum computing relies on reversible computation

Some physics (or philosophy?):

• In the real world, there are some operations that are believed to be irreversible:

• Quantum physics: Information must be preserved and cannot be erased (unless you are dealing 
with a black hole) – There must exists some unitary 𝑼 (in theory) such that you can...

• ...if you can isolate the system (pure state vs mixed state, will be introduced in the future) 
• and find the right unitary operator (very hard)!

Unitary Operation

burn a paper 

𝑼−𝟏𝑼

(source of images: Vector)



• Quantum computing relies on unitary operations
• Any unitary matrix specifies a valid quantum gate/operation/algorithm

• Similar to classical computing, we use logic gates as the basic building blocks in quantum computing

Quantum Logic Gates

Unitary 
Operator

𝑼
𝝓 𝝓′ = 𝑼 𝝓



• Quantum computing relies on unitary operations
• Any unitary matrix specifies a valid quantum gate/operation/algorithm

• Similar to classical computing, we use logic gates as the basic building blocks in quantum computing
• The quantum logic gates should obey the rules in quantum mechanics
• NOT gate is reversible
• AND, NAND, OR, and XOR gates are irreversible

Quantum Logic Gates

Logic Gate 
F𝝓 𝝓′ = 𝑭 𝝓 ?



• Quantum computing relies on unitary operations
• Any unitary matrix specifies a valid quantum gate/operation/algorithm

• Similar to classical computing, we use logic gates as the basic building blocks in quantum computing
• The quantum logic gates should obey the rules in quantum mechanics
• NOT gate is reversible
• AND, NAND, OR, and XOR gates are irreversible – We preserve the input to make them reversible...
• ...and store the result using ancilla qubit(s) (or auxiliary, temporary workspace) which are usually set as 0

Quantum Logic Gates

𝝓
Logic Gate 

F

𝝓

𝒚 𝒚 ⊕ 𝑭(𝝓)



• Examples (let’s focus on the computational basis):

Quantum Logic Gates

qAND 
Gate

NOT AND𝑏 ത𝑏
𝑏0

𝑏1
𝑏0 ∧ 𝑏1

|𝑏0⟩

|𝑏1⟩

|𝑏0⟩

|𝑏1⟩

|0⟩ |𝑏0 ∧ 𝑏1⟩

qNOT
|𝑏⟩

|0⟩

|𝑏⟩

|ത𝑏⟩



• Examples (let’s focus on the computational basis):

• How can we define the qOR and qNAND gates?

Quantum Logic Gates

qAND 
Gate

NOT AND𝑏 ത𝑏
𝑏0

𝑏1
𝑏0 ∧ 𝑏1

|𝑏0⟩

|𝑏1⟩

|𝑏0⟩

|𝑏1⟩

|𝑦⟩ 𝑦 ⊕ (𝑏0 ∧ 𝑏1 ⟩

qNOT
|𝑏⟩

|𝑦⟩

|𝑏⟩

|𝑦 ⊕ ത𝑏⟩



• More basic quantum gates:

• Their matrix representations (in the computational basis): 

Quantum Gates

H

Hadamard Matrix

X
(qNOT)

Pauli-X
(The qNOT gate)

CNOT
(The Controlled NOT/X gate)

…

1

2

1 1
1 −1

0 1
1 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0



• Hadamard Matrix:

• 𝑯 0 =
1

2

1
1

=
𝟎 + 𝟏

2

• 𝑯 1 =
1

2

1
−1

=
𝟎 − 𝟏

2

• By Exercise 5 in Week 1, 𝑯𝟐 = 𝑰

• Turns a qubit to “halfway” between 0  and 1 . 

Quantum Gates

H

:= 1

2

1 1
1 −1

• CNOT:

• CNOT 𝟎 𝒃 → 𝟎 𝒃

• CNOT 𝟏 𝒃 → 𝟏 𝟏 ⊕ 𝒃 = 𝟏 ഥ𝒃

• Classical counterpart: 
• If the first bit = 0: do nothing; 
• Else: Flip the second bit

≔

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0



Quantum Gates

• Let 𝑓 be a finite computable function.

• There exists a circuit that implements 𝑓
• Construct circuits using logic gates

• In Quantum Computing:
• Construct a quantum circuit to compute 𝑓 (using quantum logic gates)
• Require reversible computation, while 𝑓 may not be reversible



• Generally, let 𝑓: 0,1 → {0,1} be a computable bit function. 

• Define the quantum version of 𝑓 as:

Quantum Circuits

𝑼𝒇

Quantum wire (or register)
for storing input qubit

Quantum wire (or register)
for storing output qubit

𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓 𝑥



• More generally, let 𝑓: 0,1 𝑛 → 0,1 𝑚 be a computable function

Quantum Circuits

⋮ ⋮

⋮ ⋮

𝑼𝒇

𝑥0

𝑥1

𝑥2

𝑥3

𝑥0

𝑥1

𝑥2

𝑥3

𝑥𝑛−1 𝑥𝑛−1

⋮ ⋮

𝑦0

𝑦𝑚−1
⋮

𝑦1

𝑦2 𝒚 ⊕ 𝒇 𝒙



• More generally, let 𝑓: 0,1 𝑛 → 0,1 𝑚 be a computable function
• 𝑼𝒇 is also a unitary

Quantum Circuits

𝑼𝒇

𝑥0

𝑥1

𝑥2

𝑥3

𝑥0

𝑥1

𝑥2

𝑥3

𝑥𝑛−1 𝑥𝑛−1

⋮ ⋮

𝑦0

𝑦𝑚−1
⋮

𝑦1

𝑦2 𝒚 ⊕ 𝒇 𝒙

(Simplify the notations...)



• Let 𝑓 be a finite computable function.

• There exists a circuit that implements 𝑓
• Construct circuits using logic gates

• In Quantum Computing:
• Construct a quantum circuit to compute 𝑓 (using quantum logic gates)
• Require reversible computation, while 𝑓 may not be reversible
• Generic transformation: 𝑓 → 𝑼𝒇 (make it unitary using ancilla qubits)

Quantum Circuits



• Let 𝑓 be a finite computable function.

• There exists a circuit that implements 𝑓
• Construct circuits using logic gates

• In Quantum Computing:
• Construct a quantum circuit to compute 𝑓 (using quantum logic gates)
• Require reversible computation, while 𝑓 may not be reversible
• Generic transformation: 𝑓 → 𝑼𝒇 (make it unitary using ancilla qubits)

• Any classical algorithm (circuit) can be simulated by a quantum algorithm (circuit)
• Classical algorithms/circuits are built from classical logic gates
• Classical logic gates can be simulated using reversible quantum logic gates 
• Quantum logic gates can be composed into quantum algorithms/circuits

Quantum Circuits



Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity



Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

X
(qNOT)

Pauli X (qNOT)

0 1

X
(qNOT)1 0

X
(qNOT) ?𝛼 0 + 𝛽 1



Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

X
(qNOT)

Pauli X (qNOT)

0 1

X
(qNOT)1 0

X
(qNOT)

𝛼 0 + 𝛽 1 𝛼 1 + 𝛽 0



Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

H𝛼 0 + 𝛽 1 ?



Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

0

0

0

1

0 1 ⊕ 0 = 1

1

0 ⊕ 0 = 0 𝛼 0 + 𝛽 1

0

?CNOT



Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

0

0

0

1

0 1 ⊕ 0 = 1

1

0 ⊕ 0 = 0 𝛼 0 + 𝛽 1

0

𝜶 𝟎𝟎 + 𝜷 𝟏𝟏CNOT



Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

𝛼 0 + 𝛽 1

0

𝑼𝒇

𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓 𝑥

?



• Quantum gates are described by unitaries
• Any unitary also specifies a valid quantum gate

• Basic quantum gates: Hadamard, Pauli-X (NOT), CNOT, ...

• Make a classical computable function unitary 𝑓 → 𝑼𝒇

• Any classical algorithm can be simulated by quantum computers

• Evaluation on superposition
• View any quantum gate as a unitary linear operator (matrix)
• Quantum gates act on superpositions according to linearity

Summary



• Deutsch’s algorithm

• More linear algebra on unitary operations

• The Deutsch-Jozsa algorithm

• Simple measurement and superdense coding

Topics for Next Week



References
• [NC00]: Sections 1.3.1 – 1.3.5 (no-cloning theorem), 1.4.1 – 1.4.2
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