
Quantum Computing
• Lecture 3 (April 30, 2025)

• Today:
• Quantum unitary operations

• Sigle-qubit state: The numbers 𝛼 and 𝛽 are complex number and 𝛼 2 + 𝛽 2 = 1

• An 𝒏-qubit states (in the computational basis)

• General description: Let { 𝜙0 , 𝜙1 , 𝜙2 , ..., 𝜙𝑁−1 } be an orthonormal basis

Qubit

𝜙 = 𝛼 0 + 𝛽 1

𝝓 = σ𝑖=0
2𝑛−1 𝛼𝑖 𝑖 , where 𝛼𝑖 ∈ ℂ and σ𝑖=0

𝑛−1 𝛼𝑖
2 = 1

𝝓 = σ𝑖=0
𝑁−1 𝛼𝑖 𝜙𝑖 , where 𝛼𝑖 ∈ ℂ and σ𝑖=0

𝑁−1 𝛼𝑖
2 = 1

• Some operations introduced last week:
• Adjoint: 𝑼† = 𝑼∗ 𝑻 = 𝑼𝑻 ∗

• Inner product/Outer product: 𝜓 𝜙 , |𝜓⟩⟨𝜙|

• Tensor product: 𝜙 ⊗ 𝜙 = 𝜙𝜙 , 𝑼𝟏 ⊗ 𝑼𝟐

Qubit

• The Schrödinger equation describes the evolution of the quantum state of an isolated system
• The equation is linear (i.e., any linear combination of solutions is a solution)

• ⇒ The evolution of quantum states is also linear
• Always keep in mind: linear operations ⟺ matrices!

• We use linear operators (or matrices) to describe evolutions of quantum states.

Unitary Operation

Evolution𝝓 𝝓′

• We use linear operators (or matrices) to describe evolutions of quantum states.

• Observations:
• (1) A quantum state – (evolution) → another quantum state
• (2) By definition, a quantum state is a unit vector (normalized condition)

Unitary Operation

Linear
operator

or
matrix 𝑼

𝝓 𝝓′

• We use linear operators (or matrices) to describe evolutions of quantum states.

• Observations:
• (1) A quantum state – (evolution) → another quantum state
• (2) By definition, a quantum state is a unit vector (normalized condition)

• Quantum evolutions preserve the norm!
• Let 𝑼 denote such a linear operation. For any quantum state 𝝓 , 𝝓 = 𝑼 𝝓 = 𝟏

Unitary Operation

Linear
operator

or
matrix 𝑼

𝝓 𝝓′

• We use linear operators (or matrices) to describe operations on quantum states.

• Observations:
• (1) A quantum state – (linear operators) → another quantum state
• (2) By definition, a quantum state is a unit vector (normalized condition)

• Quantum evolutions (linear operators or matrices) preserve the norm
• Let 𝑼 denote such an operation. For any quantum state 𝝓 , 𝝓 = 𝑼 𝝓 = 𝟏

Unitary Operation

Linear
Operator

or
matrix 𝑼

𝝓 𝝓′

Some Linear Algebra – Unitary:
• Unitary matrices (unitary operators, or simply unitaries)
• A square matrix 𝑼 is a unitary if one of the following conditions holds:

• (1) For any 𝝓 , 𝝓 = 𝑼 𝝓

• (2) 𝑼† = 𝑼−𝟏 (or 𝑼†𝑼 = 𝑰)
• ...

• Exercise: (1) ⟺ (2)

• Hermitian: A matrix (or linear operator) 𝑼 is Hermitian or self-adjoint if 𝑼 = 𝑼†

• Normal operator/matrix: 𝑼𝑼† = 𝑼†𝑼 (but not necessarily = 𝑰)
• Quick thought: Unitary ⟹ Normal

• We use a unitary to describe the evolution of a quantum state.

• In quantum computing, we use unitary operations to operate qubit(s)

Unitary Operation

Unitary
Operator

𝑼
𝝓 𝝓′ = 𝑼 𝝓

• We use a unitary to describe the evolution of a quantum state.

• In quantum computing, we use unitary operations to operate qubit(s)
• Unitaries are invertible ⟹ Unitary operations are always reversible

• In contrast to classical computing, quantum computing relies on reversible computation

Unitary Operation

Unitary
Operator

𝑼
𝝓 𝝓′ = 𝑼 𝝓

Unitary
Operator

𝑼
𝝓 𝝓′ = 𝑼 𝝓

• We use a unitary to describe the evolution of a quantum state.

• In quantum computing, we use unitary operations to operate qubit(s)
• Unitaries are invertible ⟹ Unitary operations are always reversible

• In contrast to classical computing, quantum computing relies on reversible computation

Some physics (or philosophy?):

• In the real world, there are some operations that are believed to be irreversible:

• Quantum physics: Information must be preserved and cannot be erased (unless you are dealing
with a black hole) – There must exists some unitary 𝑼 (in theory) such that you can...

• ...if you can isolate the system (pure state vs mixed state, will be introduced in the future)
• and find the right unitary operator (very hard)!

Unitary Operation

burn a paper

𝑼−𝟏𝑼

(source of images: Vector)

• Quantum computing relies on unitary operations
• Any unitary matrix specifies a valid quantum gate/operation/algorithm

• Similar to classical computing, we use logic gates as the basic building blocks in quantum computing

Quantum Logic Gates

Unitary
Operator

𝑼
𝝓 𝝓′ = 𝑼 𝝓

• Quantum computing relies on unitary operations
• Any unitary matrix specifies a valid quantum gate/operation/algorithm

• Similar to classical computing, we use logic gates as the basic building blocks in quantum computing
• The quantum logic gates should obey the rules in quantum mechanics
• NOT gate is reversible
• AND, NAND, OR, and XOR gates are irreversible

Quantum Logic Gates

Logic Gate
F𝝓 𝝓′ = 𝑭 𝝓 ?

• Quantum computing relies on unitary operations
• Any unitary matrix specifies a valid quantum gate/operation/algorithm

• Similar to classical computing, we use logic gates as the basic building blocks in quantum computing
• The quantum logic gates should obey the rules in quantum mechanics
• NOT gate is reversible
• AND, NAND, OR, and XOR gates are irreversible – We preserve the input to make them reversible...
• ...and store the result using ancilla qubit(s) (or auxiliary, temporary workspace) which are usually set as 0

Quantum Logic Gates

𝝓
Logic Gate

F

𝝓

𝒚 𝒚 ⊕ 𝑭(𝝓)

• Examples (let’s focus on the computational basis):

Quantum Logic Gates

qAND
Gate

NOT AND𝑏 ത𝑏
𝑏0

𝑏1
𝑏0 ∧ 𝑏1

|𝑏0⟩

|𝑏1⟩

|𝑏0⟩

|𝑏1⟩

|0⟩ |𝑏0 ∧ 𝑏1⟩

qNOT
|𝑏⟩

|0⟩

|𝑏⟩

|ത𝑏⟩

• Examples (let’s focus on the computational basis):

• How can we define the qOR and qNAND gates?

Quantum Logic Gates

qAND
Gate

NOT AND𝑏 ത𝑏
𝑏0

𝑏1
𝑏0 ∧ 𝑏1

|𝑏0⟩

|𝑏1⟩

|𝑏0⟩

|𝑏1⟩

|𝑦⟩ 𝑦 ⊕ (𝑏0 ∧ 𝑏1 ⟩

qNOT
|𝑏⟩

|𝑦⟩

|𝑏⟩

|𝑦 ⊕ ത𝑏⟩

• More basic quantum gates:

• Their matrix representations (in the computational basis):

Quantum Gates

H

Hadamard Matrix

X
(qNOT)

Pauli-X
(The qNOT gate)

CNOT
(The Controlled NOT/X gate)

…

1

2

1 1
1 −1

0 1
1 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

• Hadamard Matrix:

• 𝑯 0 =
1

2

1
1

=
𝟎 + 𝟏

2

• 𝑯 1 =
1

2

1
−1

=
𝟎 − 𝟏

2

• By Exercise 5 in Week 1, 𝑯𝟐 = 𝑰

• Turns a qubit to “halfway” between 0 and 1 .

Quantum Gates

H

:= 1

2

1 1
1 −1

• CNOT:

• CNOT 𝟎 𝒃 → 𝟎 𝒃

• CNOT 𝟏 𝒃 → 𝟏 𝟏 ⊕ 𝒃 = 𝟏 ഥ𝒃

• Classical counterpart:
• If the first bit = 0: do nothing;
• Else: Flip the second bit

≔

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

Quantum Gates

• Let 𝑓 be a finite computable function.

• There exists a circuit that implements 𝑓
• Construct circuits using logic gates

• In Quantum Computing:
• Construct a quantum circuit to compute 𝑓 (using quantum logic gates)
• Require reversible computation, while 𝑓 may not be reversible

• Generally, let 𝑓: 0,1 → {0,1} be a computable bit function.

• Define the quantum version of 𝑓 as:

Quantum Circuits

𝑼𝒇

Quantum wire (or register)
for storing input qubit

Quantum wire (or register)
for storing output qubit

𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓 𝑥

• More generally, let 𝑓: 0,1 𝑛 → 0,1 𝑚 be a computable function

Quantum Circuits

⋮ ⋮

⋮ ⋮

𝑼𝒇

𝑥0

𝑥1

𝑥2

𝑥3

𝑥0

𝑥1

𝑥2

𝑥3

𝑥𝑛−1 𝑥𝑛−1

⋮ ⋮

𝑦0

𝑦𝑚−1
⋮

𝑦1

𝑦2 𝒚 ⊕ 𝒇 𝒙

• More generally, let 𝑓: 0,1 𝑛 → 0,1 𝑚 be a computable function
• 𝑼𝒇 is also a unitary

Quantum Circuits

𝑼𝒇

𝑥0

𝑥1

𝑥2

𝑥3

𝑥0

𝑥1

𝑥2

𝑥3

𝑥𝑛−1 𝑥𝑛−1

⋮ ⋮

𝑦0

𝑦𝑚−1
⋮

𝑦1

𝑦2 𝒚 ⊕ 𝒇 𝒙

(Simplify the notations...)

• Let 𝑓 be a finite computable function.

• There exists a circuit that implements 𝑓
• Construct circuits using logic gates

• In Quantum Computing:
• Construct a quantum circuit to compute 𝑓 (using quantum logic gates)
• Require reversible computation, while 𝑓 may not be reversible
• Generic transformation: 𝑓 → 𝑼𝒇 (make it unitary using ancilla qubits)

Quantum Circuits

• Let 𝑓 be a finite computable function.

• There exists a circuit that implements 𝑓
• Construct circuits using logic gates

• In Quantum Computing:
• Construct a quantum circuit to compute 𝑓 (using quantum logic gates)
• Require reversible computation, while 𝑓 may not be reversible
• Generic transformation: 𝑓 → 𝑼𝒇 (make it unitary using ancilla qubits)

• Any classical algorithm (circuit) can be simulated by a quantum algorithm (circuit)
• Classical algorithms/circuits are built from classical logic gates
• Classical logic gates can be simulated using reversible quantum logic gates
• Quantum logic gates can be composed into quantum algorithms/circuits

Quantum Circuits

Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

X
(qNOT)

Pauli X (qNOT)

0 1

X
(qNOT)1 0

X
(qNOT) ?𝛼 0 + 𝛽 1

Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

X
(qNOT)

Pauli X (qNOT)

0 1

X
(qNOT)1 0

X
(qNOT)

𝛼 0 + 𝛽 1 𝛼 1 + 𝛽 0

Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

H𝛼 0 + 𝛽 1 ?

Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

0

0

0

1

0 1 ⊕ 0 = 1

1

0 ⊕ 0 = 0 𝛼 0 + 𝛽 1

0

?CNOT

Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

0

0

0

1

0 1 ⊕ 0 = 1

1

0 ⊕ 0 = 0 𝛼 0 + 𝛽 1

0

𝜶 𝟎𝟎 + 𝜷 𝟏𝟏CNOT

Evaluation on Superposition

• Any quantum gate is a unitary operator
• A unitary operator has linearity: 𝑼 𝑐1𝒗𝟏 + 𝑐2𝒗𝟐 = 𝑐1𝑼𝒗𝟏 + 𝑐2𝑼𝒗𝟐

• Quantum gates (Unitaries) operate on superposition: Linearity

𝛼 0 + 𝛽 1

0

𝑼𝒇

𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓 𝑥

?

• Quantum gates are described by unitaries
• Any unitary also specifies a valid quantum gate

• Basic quantum gates: Hadamard, Pauli-X (NOT), CNOT, ...

• Make a classical computable function unitary 𝑓 → 𝑼𝒇

• Any classical algorithm can be simulated by quantum computers

• Evaluation on superposition
• View any quantum gate as a unitary linear operator (matrix)
• Quantum gates act on superpositions according to linearity

Summary

• Deutsch’s algorithm

• More linear algebra on unitary operations

• The Deutsch-Jozsa algorithm

• Simple measurement and superdense coding

Topics for Next Week

References
• [NC00]: Sections 1.3.1 – 1.3.5 (no-cloning theorem), 1.4.1 – 1.4.2

	Slide 1: Quantum Computing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

