
Quantum Computing
• Lectures 6 and 7 (May 21-22, 2025)

• Today:
• Continue the Deutsch-Jozsa algorithm
• Postulates of Quantum Computing



• Let 𝑓: 0,1 𝑛 → 0,1 be a bit function...

• (Do it on the board)

The Deutsch-Jozsa Algorithm

𝑛-qubit
System

Single-qubit
System

|00 … 0⟩

|1⟩

𝑯⊗(𝒏+𝟏) 𝑼𝒇

𝒙 𝒙

𝑦 𝑦 ⊕ 𝑓 𝒙

The 
composite 

system |𝜓0⟩ |𝜓1⟩ |𝜓2⟩ |𝜓3⟩

𝑯⊗𝒏



• Let 𝑓: 0,1 𝑛 → 0,1  be a bit function...

• (Do it on the board)

The Deutsch-Jozsa Algorithm

𝑛-qubit
System

Single-qubit
System

|00 … 0⟩

|1⟩

𝑯⊗(𝒏+𝟏) 𝑼𝒇

𝒙 𝒙

𝑦 𝑦 ⊕ 𝑓 𝒙

The 
composite 

system
𝜓3 =

|𝜓3⟩

𝑯⊗𝒏

෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• Let 𝑓: 0,1 𝑛 → 0,1  be a bit function...

• (Do it on the board)

The Deutsch-Jozsa Algorithm

𝑛-qubit
System

Single-qubit
System

|00 … 0⟩

|1⟩

𝑯⊗(𝒏+𝟏) 𝑼𝒇

𝒙 𝒙

𝑦 𝑦 ⊕ 𝑓 𝒙

The 
composite 

system
𝜓3 =

𝑯⊗𝒏

Measure the 
first 𝑛 systems

෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• What’s the probability of 𝒛 = 00 … 0 ? What about 𝒛 ≠ 00 … 0 ? 

The Deutsch-Jozsa Algorithm

𝜓3 =

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• What’s the probability of 𝒛 = 00 … 0 ? What about 𝒛 ≠ 00 … 0 ? 

The Deutsch-Jozsa Algorithm

𝜓3 =

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓(𝒙)

2𝑛

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• What’s the probability of 𝒛 = 00 … 0 ? What about 𝒛 ≠ 00 … 0 ? 

The Deutsch-Jozsa Algorithm

𝜓3 =

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓(𝒙)

2𝑛෍

𝒙 ∈ 0,1 𝑛

−1 𝑓(𝒙)

2𝑛

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• What’s the probability of 𝒛 = 00 … 0 ? What about 𝒛 ≠ 00 … 0 ? 

• What if 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙 = 0? Or 𝑓 𝒙 = 1?

• What if 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏

The Deutsch-Jozsa Algorithm

𝜓3 =

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓(𝒙)

2𝑛෍

𝒙 ∈ 0,1 𝑛

−1 𝑓(𝒙)

2𝑛

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• What’s the probability of 𝒛 = 00 … 0 ? What about 𝒛 ≠ 00 … 0 ? 

• What if 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙 = 0? Or 𝑓 𝒙 = 1?

• What if 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏

The Deutsch-Jozsa Algorithm

𝜓3 =

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓(𝒙)

2𝑛෍

𝒙 ∈ 0,1 𝑛

−1 𝑓(𝒙)

2𝑛

σ𝒙 ∈ 0,1 𝑛
−1 𝑓(𝒙)

2𝑛 = 1 or −1

Case 𝒛 = 00 … 0: 

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• What’s the probability of 𝒛 = 00 … 0 ? What about 𝒛 ≠ 00 … 0 ? 

• What if 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙 = 0? Or 𝑓 𝒙 = 1?

• What if 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏

The Deutsch-Jozsa Algorithm

𝜓3 =

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓(𝒙)

2𝑛෍

𝒙 ∈ 0,1 𝑛

−1 𝑓(𝒙)

2𝑛

σ𝒙 ∈ 0,1 𝑛
−1 𝑓(𝒙)

2𝑛 =
−1

2𝑛 

Case 𝒛 = 00 … 0: 

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2

σ𝒙 ∈ 0,1 𝑛
−1 𝑓(𝒙)

2𝑛 = 1 or −1



• What’s the probability of 𝒛 = 00 … 0 ? What about 𝒛 ≠ 00 … 0 ? 

• What if 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙 = 0? Or 𝑓 𝒙 = 1?

• What if 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏

The Deutsch-Jozsa Algorithm

𝜓3 =

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓(𝒙)

2𝑛෍

𝒙 ∈ 0,1 𝑛

−1 𝑓(𝒙)

2𝑛

σ𝒙 ∈ 0,1 𝑛
−1 𝒙𝑻𝒛+𝑓(𝒙)

2𝑛 = 0 

Case 𝒛 ≠ 00 … 0: 

σ𝒙 ∈ 0,1 𝑛
−1 𝒙𝑻𝒛+𝑓(𝒙)

2𝑛 ≠ 0 

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• What if 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙 = 0? Or 𝑓 𝒙 = 1?

• What if 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏

The Deutsch-Jozsa Algorithm

𝜓3 =

𝜓3 = ± 0 … 0 ⊗
0 − 1

2

𝜓3 =
−1

2𝑛
0 … 0 + ⋯ ⊗

0 − 1

2

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2



• What if 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙 = 0? Or 𝑓 𝒙 = 1?

• What if 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏

The Deutsch-Jozsa Algorithm

𝜓3 =

𝜓3 = ± 0 … 0 ⊗
0 − 1

2

𝜓3 =
−1

2𝑛
0 … 0 + ⋯ ⊗

0 − 1

2

Measure the first 
𝑛-qubit system

𝒛෍

𝒛 ∈ 0,1 𝑛

෍

𝒙 ∈ 0,1 𝑛

−1 𝒙𝑻𝒛+𝑓 𝒙 𝒛

2𝑛  ⊗
0 − 1

2

The measurement 
outcome is always 

𝒛 = 𝟎 … 𝟎

The measurement 
outcome is 𝒛 = 𝟎 … 𝟎

with probability 1

2𝑛 



The Deutsch-Jozsa Problem

• Constant-vs-balanced problem

• Let 𝑓: 0,1 𝑛 → 0,1  be a bit function such that it is in either two cases:
• 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙  is always a constant (0 or 1)
• 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏 (i.e., outputs 0 for half the inputs, and 1 for the other half)

• To decide whether 𝑓 is constant or balanced, how many times must we evaluate 𝑓?



The Deutsch-Jozsa Problem

• Constant-vs-balanced problem

• Let 𝑓: 0,1 𝑛 → 0,1  be a bit function such that it is in either two cases:
• 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙  is always a constant (0 or 1)
• 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏 (i.e., outputs 0 for half the inputs, and 1 for the other half)

• To decide whether 𝑓 is constant or balanced, how many times must we evaluate 𝑓?

Classical Computer
Worst-case: 2𝑛

Probabilistic algorithm: 
   𝑙 ≪ 2𝑛 times, 
   with a failure rate of 1

2𝑙



The Deutsch-Jozsa Problem

• Constant-vs-balanced problem

• Let 𝑓: 0,1 𝑛 → 0,1  be a bit function such that it is in either two cases:
• 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙  is always a constant (0 or 1)
• 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏 (i.e., outputs 0 for half the inputs, and 1 for the other half)

• To decide whether 𝑓 is constant or balanced, how many times must we evaluate 𝑓?

|00 … 0⟩

|1⟩

Deutsch-Jozsa 
Algorithm

𝒛

Classical Computer
Worst-case: 2𝑛

Probabilistic algorithm: 
   𝑙 ≪ 2𝑛 times, 
   with a failure rate of 1

2𝑙

Quantum Computer:
Evaluate once, 

with a failure rate 1

2𝑛



The Deutsch-Jozsa Problem

• Constant-vs-balanced problem

• Let 𝑓: 0,1 𝑛 → 0,1  be a bit function such that it is in either two cases:
• 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙  is always a constant (0 or 1)
• 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏 (i.e., outputs 0 for half the inputs, and 1 for the other half)

• To decide whether 𝑓 is constant or balanced, how many times must we evaluate 𝑓?

Classical Computer:
Probabilistic algorithm:  𝑙 times, with a failure rate of 1

2𝑙

Quantum Computer:
Evaluate once, with a failure rate 1

2𝑛

Quantum 
Supremacy



The Deutsch-Jozsa Problem

• Constant-vs-balanced problem

• Let 𝑓: 0,1 𝑛 → 0,1  be a bit function such that it is in either two cases:
• 𝑓 is a constant function: ∀𝒙 ∈ 0,1 𝑛, 𝑓 𝒙  is always a constant (0 or 1)
• 𝑓 is a balanced function: σ𝒙∈ 0,1 𝑛 𝑓 𝒙 = 𝟐𝒏−𝟏 (i.e., outputs 0 for half the inputs, and 1 for the other half)

• To decide whether 𝑓 is constant or balanced, how many times must we evaluate 𝑓?

Classical Computer:
Probabilistic algorithm:  𝑙 times, with a failure rate of 1

2𝑙

Quantum Computer:
Evaluate once, with a failure rate 1

2𝑛

Quantum 
Supremacy

But wait…What’s the 
practical application of the 

Deutsch-Jozsa problem?



Quantum-Classical Separation Problems

• The Deutsch–Jozsa problem has no known practical application

• It is an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation 
between quantum and classical computation (e.g., BPP vs BQP)



Quantum-Classical Separation Problems

• The Deutsch–Jozsa problem has no known practical application

• It is an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation 
between quantum and classical computation (e.g., BPP vs BQP)

• Similar quantum-classical separation problems:

• Simon’s problem (exercise or homework, TBD)

• Random Circuit Sampling



Quantum-Classical Separation Problems

• The Deutsch–Jozsa problem has no known practical application

• It is an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation 
between quantum and classical computation (e.g., BPP vs BQP)

• Similar quantum-classical separation problems:

• Simon’s problem

• Random Circuit Sampling (Google’s Sycamore and Willow)

BBC News, 2019 Google quantum AI, 2024



Quantum-Classical Separation Problems

• The Deutsch–Jozsa problem has no known practical application

• It is an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation 
between quantum and classical computation (e.g., BPP vs BQP)

• Similar quantum-classical separation problems:

• Simon’s problem

• Random Circuit Sampling

• Forrelation, Boson Sampling, …



Quantum-Classical Separation Problems

• The Deutsch–Jozsa problem has no known practical application

• It is an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation 
between quantum and classical computation (e.g., BPP vs BQP)

• Similar quantum-classical separation problems:
• Simon’s problem
• Random Circuit Sampling
• Forrelation, Boson Sampling, …

• Separation problems that have practical use:
• Hidden subgroup problem (Discrete logarithm, Factoring): Shor’s algorithm

• No quantum supremacy, but quantum acceleration
• Unstructured search problem: Grover’s search algorithm



Postulates of Quantum Computing

“Don’t be surprised if the motivation for the postulates is not always clear; even to experts the basic 
postulates of quantum mechanics appear surprising...” from [NC00]



Postulates of Quantum Computing

• First postulate: State space

from [NC00]



Postulates of Quantum Computing

• First postulate: State space

• Keywords:
• Isolated system
• Hilbert space: Complex inner product linear space (e.g., ℂ2𝑛

)
• The state of a system is completely described by a state vector  
• A state vector is a unit vector of the Hilbert space

from [NC00]

Example:
𝜙 = 𝛼 0 + 𝛽 1



Postulates of Quantum Computing

• First postulate: State space

• Keywords:
• Isolated system: (Informally,) Not entangled with other systems…
• Hilbert space: Complex inner product linear space (e.g., ℂ2𝑛

)
• The state of a system is completely described by a state vector  
• A state vector is a unit vector of the Hilbert space

from [NC00]

Example:
𝜙 = 𝛼 0 + 𝛽 1



Postulates of Quantum Computing

• Second postulate: Evolution

• Keywords:
• Closed system
• Unitary transformation

from [NC00]



Postulates of Quantum Computing

• Second postulate: Evolution

• Keywords:
• Closed system: Not interacting with other systems
• Unitary transformation

from [NC00]



Postulates of Quantum Computing

• Second postulate (using Schrodinger’s equation): Evolution

from [NC00]



Postulates of Quantum Computing

• Fourth postulate: Composite system:

from [NC00]



Postulates of Quantum Computing

• Fourth postulate: Composite system:

• Keywords:
• Tensor product
• State space of the whole system: Tensor product of the Hilbert spaces of each component system
• State vector of the whole system: Tensor product of the state vector of each component system

from [NC00]



Postulates of Quantum Computing

• Third postulate: Quantum measurement

• Do it on the board

• Measurement in the computational basis

• Partial measurement



Postulates of Quantum Computing

• Illustrating the Quantum Postulates through the Deutsch–Jozsa Algorithm

𝑛-qubit
System

Single-qubit
System

|00 … 0⟩

|1⟩

𝑯⊗(𝒏+𝟏) 𝑼𝒇

𝒙 𝒙

𝑦 𝑦 ⊕ 𝑓 𝒙

𝑯⊗𝒏



Postulates of Quantum Computing

• Illustrating the Quantum Postulates through the Deutsch–Jozsa Algorithm

𝑛-qubit
System

Single-qubit
System

|00 … 0⟩

|1⟩

𝑯⊗(𝒏+𝟏) 𝑼𝒇

𝒙 𝒙

𝑦 𝑦 ⊕ 𝑓 𝒙

𝑯⊗𝒏

(A student’s question)
Why isn’t the final state of the first n-qubit system |00 … 0⟩? 



Postulates of Quantum Computing

• Third postulate: Quantum measurement

• Measurement in the computational basis

• Partial measurement

• Collapse: The state after measurement 𝜙
𝑀𝑚 𝜙

𝜙 𝑀𝑚
† 𝑀𝑚 𝜙



Quantum Measurement

• Let 𝑀𝑚 𝑚 be a set of matrices describing some quantum measurement

• Let 𝜙  be a quantum state, perform the same measurement 𝑀𝑚 𝑚 on 𝜙  twice

𝜙
𝑀𝑚 𝜙

𝜙 𝑀𝑚
† 𝑀𝑚 𝜙

(with probability
 𝑝 𝑚 = 𝜙 𝑀𝑚

† 𝑀𝑚 𝜙 )



Quantum Measurement

• Let 𝑀𝑚 𝑚 be a set of matrices describing some quantum measurement

• Let 𝜙  be a quantum state, perform the same measurement 𝑀𝑚 𝑚 on 𝜙  twice

𝜙
𝑀𝑚 𝜙

𝜙 𝑀𝑚
† 𝑀𝑚 𝜙

(with probability
 𝑝 𝑚 = 𝜙 𝑀𝑚

† 𝑀𝑚 𝜙 )

We need more restrictions to achieve
“Stability” 



Projective Measurement
• Projective measurements: A special class of measurements



Projective Measurement
• Projective measurements: A special class of measurementsSome Linear Algebra – Projector and Eigenspace:

• A matrix 𝑷 is a projector (or projection operator) if 𝑷𝟐 = 𝑷

• For any vector 𝒙, 𝑷𝒏𝒙 = 𝑷𝒏−𝟏𝒙 = ⋯ = 𝑷𝒙

• Eigenvalues and Eigenvectors: 𝑨𝒙 = 𝜆𝒙

• A matrix (linear operator) may have multiple eigenvalues
• Each eigenvalue may have multiple linearly independent eigenvectors

• Let {𝒙𝟏, … , 𝒙𝒎} denote a maximal set of linearly independent eigenvectors of 𝜆 (i.e., 𝑨𝒙𝒊 = 𝜆𝒙𝒊)
• We say {𝒙𝟏, … , 𝒙𝒎} span the eigenspace of 𝑨 with eigenvalue 𝜆

• Given such {𝒙𝟏, … , 𝒙𝒎}, the Gram-Schmidt process gives us an orthogonal basis of the eigenspace
• Given an orthogonal basis, we can easily compute the projector onto this eigenspace



Projective Measurement
• Projective measurements: A special class of measurementsSome Linear Algebra – Spectral decomposition (simplified):

Any Hermitian operator 𝑴 (i.e., 𝑴 = 𝑴†) can be written as:

• 𝜆 represents an eigenvalue of 𝑴
• 𝑷𝜆 represents the projector onto the 𝜆 eigenspace

• 𝑷𝜆 itself is also Hermitian, i.e., 𝑷𝜆 = 𝑷𝜆
†

• Examples (show on the board)...

𝑴 = ෍

𝜆

𝜆𝑷𝜆



Projective Measurement
• Projective measurements: A special class of measurements

• (Do it on the board)

• Keywords
• Observable 𝑴 = σ𝑚 𝑚𝑷𝑚 is a Hermitian matrix 

• 𝑚 represents an eigenvalue of 𝑴, and it is also used to label a measurement outcome
• 𝑷𝑚 represents the projector onto the 𝑚 eigenspace
• 𝑷𝑚 is also Hermitian

• Measurement outcome correspond to the eigenvalues
• e.g., 𝑝 𝑚 = 𝜙 𝑃𝑚|𝜙⟩

• The state after measurement: 𝜙 →
𝑃𝑚|𝜙⟩

𝑝 𝑚



Projective Measurement
• Projective measurements: A special class of measurements

• Relation to Postulate 3:
• 𝑴 = σ𝑚 𝑚𝑷𝑚, but σ𝑚 𝑷𝑚 = 𝑰, so the completeness condition holds
• Note: An eigenvalue of an observable just represents a possible outcome (i.e., a label), but not the 

probability or physical meaning by itself

• Examples: 0 0 = 1 ⋅ 0 0 + 0 ⋅ 1 1  and 1 1 = 0 ⋅ 0 0 + 1 ⋅ 1 1
• Both can be used to represent measurement in the computational basis



Projective Measurement
• Let 𝑴 = σ𝑚 𝑚𝑷𝑚 be an observable

• Let 𝜙  be a quantum state, perform the same projective measurement 𝑴 on 𝜙  twice



Projective Measurement
• Let 𝑴 = σ𝑚 𝑚𝑷𝑚 be an observable

• Let 𝜙  be a quantum state, perform the same projective measurement 𝑴 on 𝜙  twice

𝜙
𝑃𝑚 𝜙

𝜙 𝑃𝑚 𝜙

(with probability
 𝑝 𝑚 = 𝜙 𝑃𝑚 𝜙 )



Projective Measurement
• Let 𝑴 = σ𝑚 𝑚𝑷𝑚 be an observable

• Let 𝜙  be a quantum state, perform the same projective measurement 𝑴 on 𝜙  twice
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Non-Projective Measurement
• Let 𝑀𝑚 𝑚 be a set of matrices describing some quantum measurement

• General measurement (Postulate 3): 𝑀𝑚
† 𝑀𝑚 is not necessarily a projector.

• Non-projective measurement: 𝑀𝑚
† 𝑀𝑚 is not a projector

• Cannot guarantee that the same result will be reproduced if the same measurement is repeated

• Used in various quantum information-processing protocols
• But will not be not covered in this course



References

• [NC00]: Sections 1.4.4, 2.2

• [KLM07]: Chapter 3, Sections 6.4.



Next Week

• Entanglement

• Pure state and mixed state

• Partial measurement

• No lecture next Thursday (Ascension Day, May 29)
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