Quantum Computing

* Lectures 6 and 7 (May 21-22, 2025)

* Today:
* Continue the Deutsch-Jozsa algorithm
* Postulates of Quantum Computing




The Deutsch-Jozsa Algorithm
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The Deutsch-Jozsa Algorithm

* Let f:{0,1}" - {0,1} be a bit function...
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The Deutsch-Jozsa Algorithm
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 What’s the probability of z = 00 ...0 ? What aboutz = 00...0 ?
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The Deutsch-Jozsa Algorithm
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The Deutsch-Jozsa Algorithm
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The Deutsch-Jozsa Algorithm

Measure the first
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The Deutsch-Jozsa Algorithm

Measure the first

|7~/J3> = omn
ze{0,1}" x € {0,1}"

* What’s the probability of z = 00 ...0 ? What aboutz # 00 ...0 ?
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The Deutsch-Jozsa Algorithm
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The Deutsch-Jozsa Algorithm
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The Deutsch-Jozsa Algorithm

Measure the first
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The Deutsch-Jozsa Problem

* Constant-vs-balanced problem

* Let f:{0,1}" — {0,1} be a bit function such that it is in either two cases:
* fisaconstantfunction: Vx € {0,1}", f(x) is always a constant (0 or 1)
» fisabalanced function: Y\, o 1yn f(x) = 2" (i.e., outputs O for half the inputs, and 1 for the other half)

* To decide whether f is constant or balanced, how many times must we evaluate f?




The Deutsch-Jozsa Problem

* Constant-vs-balanced problem

* Let f:{0,1}" — {0,1} be a bit function such that it is in either two cases:
* fisaconstantfunction: Vx € {0,1}", f(x) is always a constant (0 or 1)
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Classical Computer
Worst-case: 2"
Probabilistic algorithm:

[ < 2™ times,
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with a failure rate of P




The Deutsch-Jozsa Problem

* Constant-vs-balanced problem

* Let f:{0,1}" — {0,1} be a bit function such that it is in either two cases:
* fisaconstantfunction: Vx € {0,1}", f(x) is always a constant (0 or 1)
* flisabalancedfunction: ) c (o 130 [ (%) = 2™~1 (j.e., outputs O for half the inputs, and 1 for the other half)

* To decide whether f is constant or balanced, how many times must we evaluate f?

Classical Computer Quantum Computer:
Worst-case: 2" Evaluate once,
Probabilistic algorithm: with a failure rate —
[ < 2™ times, 2 100 ...0) Deutsch-Jozsa NAE= z

. . 1
with a failure rate of;
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The Deutsch-Jozsa Problem

* Constant-vs-balanced problem

* Let f:{0,1}" — {0,1} be a bit function such that it is in either two cases:
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. . 1 Quantum
Evaluate once, with a failure rate on

Supremacy




The Deutsch-Jozsa Problem

* Constant-vs-balanced problem

* Let f:{0,1}" — {0,1} be a bit function such that it is in either two cases:
* fisaconstantfunction: Vx € {0,1}", f(x) is always a constant (0 or 1)

* flisabalancedfunction: ) c (o 130 [ (%) = 2™~1 (j.e., outputs O for half the inputs, and 1 for the other half)

* To decide whether f is constant or balanced, how many times must we evaluate f?

Classical Computer:
Probabilistic algorithm: [ times, with a failure rate of%

Quantum Computer: But wait...What’s the

practical application of the
Deutsch-Jozsa problem?

. . 1 Quantum
Evaluate once, with a failure rate on

Supremacy




Quantum-Classical Separation Problems

* The Deutsch-Jozsa problem has no known practical application

* ltis an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation
between quantum and classical computation (e.g., BPP vs BQP)




Quantum-Classical Separation Problems

* The Deutsch-Jozsa problem has no known practical application

* ltis an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation
between quantum and classical computation (e.g., BPP vs BQP)

* Similar quantum-classical separation problems:
* Simon’s problem (exercise or homework, TBD)

* Random Circuit Sampling




Quantum-Classical Separation Problems

* The Deutsch-Jozsa problem has no known practical application

* ltis an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation
between quantum and classical computation (e.g., BPP vs BQP)

* Similar quantum-classical separation problems:

* Simon’s problem

n Meet Willow, our state-of-the-art quantum chip

* Random Circuit Sampling (Google’s Sycamore and Willow)

-~ e
J °
Google says an advanced computer has achieved "quantum supremacy" for the first KLeJIIIIa L
time, surpassing the performance of conventional devices. y
Director of
The technology giant's Sycamore quantum processor was able to perform a specific Hardware
task in 200 seconds that would take the world's best supercomputer 10,000 years to Gt
complete.
BBC News, 2019 Google quantum Al, 2024
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Quantum-Classical Separation Problems

* The Deutsch-Jozsa problem has no known practical application

* ltis an early example of quantum supremacy, illustrating (or suggesting) the theoretical separation
between quantum and classical computation (e.g., BPP vs BQP)

* Similar quantum-classical separation problems:
* Simon’s problem
* Random Circuit Sampling

* Forrelation, Boson Sampling, ...
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Quantum-Classical Separation Problems

The Deutsch-Jozsa problem has no known practical application

It is an early example of qguantum supremacy, illustrating (or suggesting) the theoretical separation
between quantum and classical computation (e.g., BPP vs BQP)

Similar qguantum-classical separation problems:
* Simon’s problem
* Random Circuit Sampling
* Forrelation, Boson Sampling, ...

Separation problems that have practical use:
 Hidden subgroup problem (Discrete logarithm, Factoring): Shor’s algorithm

No quantum supremacy, but quantum acceleration
* Unstructured search problem: Grover’s search algorithm




Postulates of Quantum Computing

“Don’t be surprised if the motivation for the postulates is not always clear; even to experts the basic
postulates of quantum mechanics appear surprising...” from [NCO0O]




Postulates of Quantum Computing

* First postulate: State space

Postulate 1: Associated to any isolated physical system is a complex vector space
with inner product (that 1s, a Hilbert space) known as the state space of the
system. The system 1s completely described by its state vector, which is a unit
vector in the system’s state space. from [NCOO]




Postulates of Quantum Computing

* First postulate: State space

Postulate 1: Associated to any isolated physical system is a complex vector space
with inner product (that 1s, a Hilbert space) known as the state space of the
system. The system 1s completely described by its state vector, which is a unit

vector in the system’s state space. from [NCOO]
* Keywords:
* |solated system
* Hilbert space: Complexinner product linear space (e.g., (Czn) Example:
* The state of a system is completely described by a state vector |p) = a|0) + B|1)

* A state vectoris a unit vector of the Hilbert space
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Postulates of Quantum Computing

* First postulate: State space

Postulate 1: Associated to any isolated physical system is a complex vector space
with inner product (that 1s, a Hilbert space) known as the state space of the
system. The system 1s completely described by its state vector, which is a unit

vector in the system’s state space. from [NCOO]
* Keywords:
* |Isolated system: (Informally,) Not entangled with other systems...
* Hilbert space: Complexinner product linear space (e.g., (Czn) Example:
* The state of a system is completely described by a state vector |p) = a|0) + B|1)

* A state vectoris a unit vector of the Hilbert space
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Postulates of Quantum Computing

* Second postulate: Evolution

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state [¢)) of the system at time 7, is related to the

state [¢)") of the system at time ¢, by a unitary operator U which depends only on
the times #; and 7,

") = Ul). from [NCOO]

* Keywords:
* Closed system
* Unitary transformation




Postulates of Quantum Computing

* Second postulate: Evolution

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state [¢)) of the system at time 7, is related to the

state [¢)") of the system at time ¢, by a unitary operator U which depends only on
the times #; and 7,

") =Uly). from [NCOO]

* Keywords:

* Closed system: Not interacting with other systems
* Unitary transformation




Postulates of Quantum Computing

* Second postulate (using Schrodinger’s equation): Evolution

Postulate 2": The time evolution of the state of a closed quantum system is
described by the Schrodinger equation,

d|vp)
dt

In this equation, /i is a physical constant known as Planck’s constant whose value
must be experimentally determined. The exact value is not important to us. In

ih——r’ = H|1).

practice, it is common to absorb the factor i into H, effectively setting A = 1. H
1s a fixed Hermitian operator known as the Hamziltonian of the closed system.

from [NCO0O]




Postulates of Quantum Computing

* Fourth postulate: Composite system:

Postulate 4: The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number ¢ 1s prepared in the state

|1i), then the joint state of the total system is [t)1) ® [t2) ® -~ @ [¥n). 101 nCOO]




Postulates of Quantum Computing

* Fourth postulate: Composite system:

Postulate 4: The state space of a composite physical system 1s the tensor product
of the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number ¢ is prepared in the state

|1)i), then the joint state of the total system is [¢1) @ [12) @ -+ & [¥n). 100 nCOO]

* Keywords:
* Tensor product
» State space of the whole system: Tensor product of the Hilbert spaces of each component system
e State vector of the whole system: Tensor product of the state vector of each component system
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Postulates of Quantum Computing

Third postulate: Quantum measurement

Do it on the board

Measurement in the computational basis

Partial measurement




Postulates of Quantum Computing

* |llustrating the Quantum Postulates through the Deutsch-Jozsa Algorithm

o

————————

System

________

AR




Postulates of Quantum Computing

* |llustrating the Quantum Postulates through the Deutsch-Jozsa Algorithm

o

————————

System

________

AR

(A student’s question)

Why isn’t the final state of the first n-qubit system |00 ...




Postulates of Quantum Computing

Third postulate: Quantum measurement

Measurement in the computational basis

Partial measurement

) ———

Collapse: The state after measurement

M |9)

($IM M, |p)




Quantum Measurement

* Let{M,,},, be a set of matrices describing some quantum measurement

* Let |¢) be a quantum state, perform the same measurement {M,,, },,, on |¢) twice

|p) — M| ) , ?
(GIM M, |B)

(with probability
p(m) = ($IM}, My |9))




Quantum Measurement

* Let{M,,},, be a set of matrices describing some quantum measurement

* Let |¢) be a quantum state, perform the same measurement {M,,, },,, on |¢) twice

M
(| My M )
(with probability We need more restrictions to achieve
p(m) = (| M} M,,|p)) “Stability”




Projective Measurement

* Projective measurements: A special class of measurements




Projective Measurement

/Some Linear Algebra — Projector and Eigenspace:

A matrix P is a projector (or projection operator) if P2 = P
For anyvector x, P"x = P* 1x = ... = Px

Eigenvalues and Eigenvectors: Ax = Ax
A matrix (linear operator) may have multiple eigenvalues
Each eigenvalue may have multiple linearly independent eigenvectors

Let {x4, ..., X,n} denote a maximal set of linearly independent eigenvectors of 1 (i.e., Ax; = Ax;)

We say {xq, ..., X;,} span the eigenspace of A with eigenvalue 1

Given such {xq, ..., X, }, the Gram-Schmidt process gives us an orthogonal basis of the eigenspace

Given an orthogonal basis, we can easily compute the projector onto this eigenspace




Projective Measurement

(Some Linear Algebra — Spectral decomposition (simplified): \

Any Hermitian operator M (i.e., M = M) can be written as:

M = z /1P/1
A
* Arepresents an eigenvalue of M
P, represents the projector onto the A eigenspace

 P,itselfis also Hermitian,i.e., P, = P;

\° Examples (show on the board)... j




Projective Measurement

* Projective measurements: A special class of measurements

(Do itonthe board)

* Keywords

* Observable M = )., mP,, is a Hermitian matrix
 mrepresents an eigenvalue of M, and it is also used to label a measurement outcome
* P, represents the projector onto the m eigenspace
P, isalsoHermitian

* Measurement outcome correspond to the eigenvalues

* e.g.,p(m) = (¢|Pn|P)

P
* The state after measurement: |¢) — ml9)

p(m)
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Projective Measurement

* Projective measurements: A special class of measurements

* Relation to Postulate 3:
« M=), mP,, but)., P, =1I,sothe completeness condition holds
* Note: An eigenvalue of an observable just represents a possible outcome (i.e., a label), but not the
probability or physical meaning by itself

 Examples: |0){0] = 1-]0)0| + 0-|1){1|and |1){1]| =0 -|0){O| + 1 -|1){(1]
* Both can be used to represent measurement in the computational basis




Projective Measurement

* LetM = ), mP,, be an observable

* Let |¢) be a quantum state, perform the same projective measurement M on |¢) twice




Projective Measurement

* LetM = ), mP,, be an observable

* Let |¢) be a quantum state, perform the same projective measurement M on |¢) twice

9) S -
HB1P]) .

(with probability
p(m) = (¢|F,lP))




Projective Measurement

* LetM = ), mP,, be an observable

* Let |¢) be a quantum state, perform the same projective measurement M on |¢) twice

) . _Pule) . _Pule)
V(@IP,19) V(@IPn1d)
(with probability (with probability 1)

p(m) = (¢|hnlP))




Non-Projective Measurement

* Let{M,,},, be a set of matrices describing some quantum measurement

* General measurement (Postulate 3): M;,F,LMm is not necessarily a projector.

* Non-projective measurement: M;?rle is not a projector
 Cannot guarantee that the same result will be reproduced if the same measurement is repeated

* Used invarious quantum information-processing protocols
* Butwill not be not covered in this course
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References

 [NCO0O]: Sections 1.4.4, 2.2
 [KLMO7]: Chapter 3, Sections 6.4.




Next Week

Entanglement

Pure state and mixed state

Partial measurement

No lecture next Thursday (Ascension Day, May 29)
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