
Quantum Computing
• Lectures 11 and 12 (June 11-12, 2025)

• Today:
• Quantum circuits
• Controlled operations



Qubit Operations

• Single-qubit operations
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Understand single-qubit operations via the Bloch Sphere

• A single-qubit pure state 𝜓 = 𝛼 0 + 𝛽 1  can be written as: 

       We ignore 𝑒𝑖𝛾 since it has no observable effect (i.e., does not change measurement distribution…)

Represent the state on the Bloch Sphere
• Case 1: Both 𝛼 and 𝛽 are real numbers…
• Case 2: 𝛼 or 𝛽 is complex number …
• A quick question: Why 3D space? (Why not 4D for expressing a qubit?)

𝜓 = 𝑒𝑖𝛾 cos
𝜃

2
0 + 𝑒𝑖𝜑 sin

𝜃

2
1



Qubit Operations

• Single-qubit operations

• Illustrate these operations on Bloch Sphere…
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Qubit Operations

• Single-qubit operations

• Illustrate these operations on Bloch Sphere…

• Observation: Single-qubit Unitary transformation = Rotations (on Bloch Sphere)

• Linear Algebra Fact: (Generalized) Rotation = “Length-preserving” = Unitary
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Qubit Operations

• Single-qubit Unitary transformation = Rotations on Bloch Sphere

• Question: Do we have a general way to represent rotations (and thus unitaries)?
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Qubit Operations

• Single-qubit Unitary transformation = Rotations on Bloch Sphere

• Question: Do we have a general way to represent rotations (and thus unitaries)?

• E.g., rotation by 90°about the Z axe: 𝑹𝒛 90°

𝑹𝒙 𝜽 ≔ cos
𝜃

2
⋅ 𝑰 − 𝑖 sin

𝜃

2
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⋅ 𝑰 − 𝑖 sin
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2
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𝑹𝒛 𝜽 ≔ cos
𝜃

2
⋅ 𝑰 − 𝑖 sin

𝜃

2
⋅ 𝒁 (Rotation about the Z axe)



• Single-qubit Unitary transformation = Rotations on Bloch Sphere

• Question: Do we have a general way to represent rotations (and thus unitaries)?

• Theorem (Z-Y decomposition): For any unitary 𝑼, there exist real numbers 𝑎, 𝑏, 𝑐, and 𝑑 such that
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Qubit Operations

𝑼 = 𝑒𝑖𝑎 𝑹𝒛 𝑏  𝑹𝒚 𝑐  𝑹𝒛 𝑑



• Single-qubit Unitary transformation = Rotations on Bloch Sphere
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Qubit Operations



Controlled Operations

• Controlled NOT:

• Generalized controlled gate:

𝐜𝐍𝐎𝐓 𝑐 𝑡 → 𝑐 𝐍𝐎𝐓𝑐 𝑡

𝑼

𝐜𝑼 𝑐 𝑡 → 𝑐 𝑼𝑐 𝑡



Controlled Operations

• Specify the control qubit(s) and the target qubit(s)

𝑼𝟏

𝑼𝟐

⋮

𝑼𝟑
𝑼𝟒

𝑼𝟓

Control 
qubit(s) 

Target
qubit(s) 



Controlled Operations

• Toffoli Gate:

𝐜𝐍𝐎𝐓 𝑐1𝑐2 𝑡 → 𝑐1𝑐2 𝐍𝐎𝐓𝑐1𝑐2 𝑡
(Flip the target qubit if the two control qubits are 1)



Controlled Operations

• Toffoli Gate:

• Implement Toffoli Gate via Hadamard, Phase, CNOT, and 𝛑/8 

𝐜𝐍𝐎𝐓 𝑐1𝑐2 𝑡 → 𝑐1𝑐2 𝐍𝐎𝐓𝑐1𝑐2 𝑡
(Flip the target qubit if the two control qubits are 1)

=

Figure 4.9 of [NC00]



Controlled Operations

• Toffoli Gate:

• Conclusion: Toffoli Gate can be composed by using Hadamard, Phase, CNOT, and 𝛑/8 

𝐜𝐍𝐎𝐓 𝑐1𝑐2 𝑡 → 𝑐1𝑐2 𝐍𝐎𝐓𝑐1𝑐2 𝑡
(Flip the target qubit if the two control qubits are 1)



Controlled Operations

• Consider the following controlled operations:

• How can we implement them using Toffoli gates and 𝑼?

𝑼

𝑼



Controlled Operations

• Consider the following controlled operations:

• How can we implement them using Toffoli gates and 𝑼?

• Theorem (informal): Any quantum gate of controlled operations can be implemented via 𝑼 (the 
controlled unitary), CNOT, and some single-qubit gates.

𝑼

𝑼



Universal Quantum Gates

• Universal set of gates: 
• Collection of basic logic gates
• Any Boolean function can be implemented using only gates from this set

• Universal set of classical gates: 
• {AND, OR, NOT}
• {NAND, NOR}

• Universal set of quantum gates:
• {Single-qubit gates, CNOT}
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Universal Quantum Gates

• Universal set of gates: 
• Collection of basic logic gates
• Any Boolean function can be implemented using only gates from this set

• Universal set of classical gates: 
• {AND, OR, NOT}
• {NAND, NOR}

• Universal set of quantum gates:
• {Single-qubit gates, CNOT} //Infinite

• Exact Universality: Not physically realizable

• Approximate Universality: {𝑯, 𝑻, CNOT} //Use H and T to approximate any single-qubit unitary



Measurement

• Quantum Measurement and controlled operations

• “Control-then-measure”

• “Measure-then-control”

𝑼

𝑼



Measurement

• Quantum Measurement and controlled operations

• “Control-then-measure” = “Measure-then-control” 
(if the qubit being measured is the control qubit)

𝑼 𝑼

=



Measurement

• Example: Quantum Teleportation

00 + 11

2
Bob

Alice

𝒃𝟏𝒃𝟐

𝜓

Bell

Total states: 𝜙2  
= 𝛽𝑏1𝑏2

⊗ 𝜓

𝜓

𝛽𝑏1𝑏2

𝜙0

= σ𝑏1,𝑏2∈{0,1} 𝛽𝑏1𝑏2
𝑼𝒃𝟐𝒃𝟏

† 𝜓  

𝜙1

= 𝛽𝑏1𝑏2
𝑼𝒃𝟐𝒃𝟏

† 𝜓

𝑼𝒃𝟐𝒃𝟏
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By definition of 
the 𝑼𝒃𝟐𝒃𝟏



Measurement

• Example: Quantum Teleportation

00 + 11

2
Bob

Alice

𝜓

Total states:

𝑿𝒃𝟐 𝒁𝒃𝟏

𝑯
𝒃𝟏𝒃𝟐

𝜙2  
= 𝛽𝑏1𝑏2
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𝛽𝑏1𝑏2

𝜓

By a previous
exercise question



• Exercise: Quantum Teleportation

Measurement

00 + 11

2

𝜓

Total states: 𝜙2  𝜙0

 
𝜙1  

𝑿𝒃𝟐 𝒁𝒃𝟏

𝑯



Measurement

• Two principles about measurement

• Principle of Deferred Measurement

• Principle of Implicit Measurement



Measurement

• Principle of Deferred Measurement:
• “Intermediate measurements” can be moved to the end

𝑼

…

𝑼

…=



Measurement

• Principle of Deferred Measurement:
• “Intermediate measurements” can be moved to the end

• Specifically, “Measure-then-control” = “Control-then-measure”...

𝑼𝑼

𝑼

…

𝑼

…=

=



Measurement

• Principle of Implicit Measurement
• WLOG, all unmeasured qubits may be assumed to be measured at the end of the circuit...

𝑼
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Measurement

• Two principles about measurement
• Principle of Deferred Measurement
• Principle of Implicit Measurement

• Any quantum algorithm can be modeled purely with unitaries
• Even for classical-quantum hybrid algorithms!



• Exercise: Quantum Teleportation

Measurement

00 + 11

2

𝜓

Total states: 𝜙2  𝜙0

 
𝜙1  

𝑿𝒃𝟐 𝒁𝒃𝟏

𝑯



Measurement

Not invertible

Invertible



Measurement

Not invertible

Invertible

Extract information

No information extraction



Next Week

• Next two or three weeks:
• Quantum  Fourier Transformation
• Order Finding, and its application to Factoring and Discrete Logarithm



Reference
• [NC00]: Section 1.3.1, Chapter 4

• [KLM07]: Chapter 4
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